Biology and Mechanisms of Action of the Vitamin D Hormone.

[1]  G. Blobel,et al.  Detecting Long-Range Enhancer-Promoter Interactions by Quantitative Chromosome Conformation Capture. , 2017, Methods in molecular biology.

[2]  Amrita Singh,et al.  CRISPR/Cas9: a historical and chemical biology perspective of targeted genome engineering. , 2016, Chemical Society reviews.

[3]  Emmanuelle Charpentier,et al.  CRISPR-Cas: biology, mechanisms and relevance , 2016, Philosophical Transactions of the Royal Society B: Biological Sciences.

[4]  J. Pike,et al.  Selective regulation of Mmp13 by 1,25(OH)2D3, PTH, and Osterix through distal enhancers , 2016, The Journal of Steroid Biochemistry and Molecular Biology.

[5]  B. Deplancke,et al.  The Genetics of Transcription Factor DNA Binding Variation , 2016, Cell.

[6]  J. Rubin,et al.  Epigenetic Plasticity Drives Adipogenic and Osteogenic Differentiation of Marrow-derived Mesenchymal Stem Cells* , 2016, The Journal of Biological Chemistry.

[7]  Wouter de Laat,et al.  The second decade of 3C technologies: detailed insights into nuclear organization , 2016, Genes & development.

[8]  K. Pollard,et al.  Enhancer–promoter interactions are encoded by complex genomic signatures on looping chromatin , 2016, Nature Genetics.

[9]  K. White,et al.  Excessive Osteocytic Fgf23 Secretion Contributes to Pyrophosphate Accumulation and Mineralization Defect in Hyp Mice , 2016, PLoS biology.

[10]  K. White,et al.  Systemic Control of Bone Homeostasis by FGF23 Signaling , 2016, Current Molecular Biology Reports.

[11]  J. Pike,et al.  Unique Distal Enhancers Linked to the Mouse Tnfsf11 Gene Direct Tissue-Specific and Inflammation-Induced Expression of RANKL. , 2016, Endocrinology.

[12]  J. Pike,et al.  Deletion of the Distal Tnfsf11 RL‐D2 Enhancer That Contributes to PTH‐Mediated RANKL Expression in Osteoblast Lineage Cells Results in a High Bone Mass Phenotype in Mice , 2016, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[13]  J. Fleet,et al.  Compensatory Changes in Calcium Metabolism Accompany the Loss of Vitamin D Receptor (VDR) From the Distal Intestine and Kidney of Mice , 2016, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[14]  P. Dhawan,et al.  25-Hydroxyvitamin D₃ 24-Hydroxylase: A Key Regulator of 1,25(OH)₂D₃ Catabolism and Calcium Homeostasis. , 2016, Vitamins and hormones.

[15]  P. Dhawan,et al.  25-Hydroxyvitamin D₃ 24-Hydroxylase: A Key Regulator of 1,25(OH)₂D₃ Catabolism and Calcium Homeostasis. , 2016, Vitamins and hormones.

[16]  J. Pike,et al.  Genomic Determinants of Vitamin D-Regulated Gene Expression. , 2016, Vitamins and hormones.

[17]  P. Dhawan,et al.  Vitamin D: Metabolism, Molecular Mechanism of Action, and Pleiotropic Effects. , 2016, Physiological reviews.

[18]  R. Evans,et al.  BRD4 is a novel therapeutic target for liver fibrosis , 2015, Proceedings of the National Academy of Sciences.

[19]  J. Pike,et al.  Epigenetic histone modifications and master regulators as determinants of context dependent nuclear receptor activity in bone cells. , 2015, Bone.

[20]  C. O’Brien,et al.  Mechanisms of Enhancer-mediated Hormonal Control of Vitamin D Receptor Gene Expression in Target Cells* , 2015, The Journal of Biological Chemistry.

[21]  A Long-Distance Chromatin Affair , 2015, Cell.

[22]  Matthew T. Maurano,et al.  Role of DNA Methylation in Modulating Transcription Factor Occupancy. , 2015, Cell reports.

[23]  H. DeLuca,et al.  1,25-Dihydroxyvitamin D3 Controls a Cohort of Vitamin D Receptor Target Genes in the Proximal Intestine That Is Enriched for Calcium-regulating Components* , 2015, The Journal of Biological Chemistry.

[24]  J. Pike,et al.  Selective Distal Enhancer Control of the Mmp13 Gene Identified through Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) Genomic Deletions* , 2015, The Journal of Biological Chemistry.

[25]  J. Pike,et al.  Transcriptional Regulation of the Human TNFSF11 Gene in T Cells via a Cell Type‐Selective Set of Distal Enhancers , 2015, Journal of cellular biochemistry.

[26]  Profiling histone modifications by chromatin immunoprecipitation coupled to deep sequencing in skeletal cells. , 2015, Methods in molecular biology.

[27]  Sneha S. Joshi,et al.  Novel Mechanism of Negative Regulation of 1,25-Dihydroxyvitamin D3-induced 25-Hydroxyvitamin D3 24-Hydroxylase (Cyp24a1) Transcription , 2014, The Journal of Biological Chemistry.

[28]  E. Shimizu,et al.  Parathyroid Hormone Regulates Histone Deacetylase (HDAC) 4 through Protein Kinase A-mediated Phosphorylation and Dephosphorylation in Osteoblastic Cells* , 2014, The Journal of Biological Chemistry.

[29]  J. Pike,et al.  Genomic Determinants of Gene Regulation by 1,25-Dihydroxyvitamin D3 during Osteoblast-lineage Cell Differentiation*♦ , 2014, The Journal of Biological Chemistry.

[30]  Ning Leng,et al.  The osteoblast to osteocyte transition: epigenetic changes and response to the vitamin D3 hormone. , 2014, Molecular endocrinology.

[31]  E. Giovannucci,et al.  The role of vitamin D in reducing cancer risk and progression , 2014, Nature Reviews Cancer.

[32]  J. Pike,et al.  The RUNX2 Cistrome in Osteoblasts , 2014, The Journal of Biological Chemistry.

[33]  Morgan C. Giddings,et al.  Defining functional DNA elements in the human genome , 2014, Proceedings of the National Academy of Sciences.

[34]  G. Blobel,et al.  Manipulating nuclear architecture. , 2014, Current opinion in genetics & development.

[35]  J. Pike,et al.  Regulation of gene expression by 1,25-dihydroxyvitamin D3 in bone cells: exploiting new approaches and defining new mechanisms. , 2014, BoneKEy reports.

[36]  Glenville Jones,et al.  Cytochrome P450-mediated metabolism of vitamin D , 2014, Journal of Lipid Research.

[37]  J. Pike,et al.  The RUNX2 Cistrome in Osteoblasts: Characterization, Downregulation Following Differentiation and Relationship to Gene Expression* , 2014 .

[38]  V. Tasic,et al.  Vitamin D receptor mutations in patients with hereditary 1,25-dihydroxyvitamin D-resistant rickets. , 2014, Molecular genetics and metabolism.

[39]  H. DeLuca,et al.  CYP2R1 is a major, but not exclusive, contributor to 25-hydroxyvitamin D production in vivo , 2013, Proceedings of the National Academy of Sciences.

[40]  E. Holtzman,et al.  Loss-of-function mutations of CYP24A1, the vitamin D 24-hydroxylase gene, cause long-standing hypercalciuric nephrolithiasis and nephrocalcinosis. , 2013, The Journal of urology.

[41]  P. Dhawan,et al.  Vitamin D biology revealed through the study of knockout and transgenic mouse models. , 2013, Annual review of nutrition.

[42]  J. Pike,et al.  Corepressors (NCoR and SMRT) as well as coactivators are recruited to positively regulated 1α,25-dihydroxyvitamin D3-responsive genes , 2013, The Journal of Steroid Biochemistry and Molecular Biology.

[43]  Michael Q. Zhang,et al.  Epigenomic Analysis of Multilineage Differentiation of Human Embryonic Stem Cells , 2013, Cell.

[44]  Michael J. Ziller,et al.  Transcriptional and Epigenetic Dynamics during Specification of Human Embryonic Stem Cells , 2013, Cell.

[45]  R. Evans,et al.  A Vitamin D Receptor/SMAD Genomic Circuit Gates Hepatic Fibrotic Response , 2013, Cell.

[46]  M. Kuro-o,et al.  Fibroblast growth factor 23 and Klotho: physiology and pathophysiology of an endocrine network of mineral metabolism. , 2013, Annual review of physiology.

[47]  Le Cong,et al.  Multiplex Genome Engineering Using CRISPR/Cas Systems , 2013, Science.

[48]  William Stafford Noble,et al.  Integrative annotation of chromatin elements from ENCODE data , 2012, Nucleic acids research.

[49]  J. Fleet,et al.  Villin promoter‐mediated transgenic expression of transient receptor potential cation channel, subfamily V, member 6 (TRPV6) increases intestinal calcium absorption in wild‐type and vitamin D receptor knockout mice , 2012, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[50]  Nathan C. Sheffield,et al.  The accessible chromatin landscape of the human genome , 2012, Nature.

[51]  J. Stamatoyannopoulos What does our genome encode? , 2012, Genome research.

[52]  D. Russell,et al.  Mutation of the CYP2R1 vitamin D 25-hydroxylase in a Saudi Arabian family with severe vitamin D deficiency. , 2012, The Journal of clinical endocrinology and metabolism.

[53]  P. Gregory,et al.  Controlling Long-Range Genomic Interactions at a Native Locus by Targeted Tethering of a Looping Factor , 2012, Cell.

[54]  Hai Qing,et al.  Demonstration of osteocytic perilacunar/canalicular remodeling in mice during lactation , 2012, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[55]  J. Schrooten,et al.  Normocalcemia is maintained in mice under conditions of calcium malabsorption by vitamin D-induced inhibition of bone mineralization. , 2012, The Journal of clinical investigation.

[56]  C. Bountra,et al.  Epigenetic protein families: a new frontier for drug discovery , 2012, Nature Reviews Drug Discovery.

[57]  Dawn S Milliner,et al.  Hypercalcemia, hypercalciuria, and elevated calcitriol concentrations with autosomal dominant transmission due to CYP24A1 mutations: effects of ketoconazole therapy. , 2012, The Journal of clinical endocrinology and metabolism.

[58]  D. Moras,et al.  Structure of the full human RXR/VDR nuclear receptor heterodimer complex with its DR3 target DNA , 2012, The EMBO journal.

[59]  L. Quarles,et al.  Skeletal secretion of FGF-23 regulates phosphate and vitamin D metabolism , 2012, Nature Reviews Endocrinology.

[60]  J. Pike,et al.  VDR/RXR and TCF4/β-catenin cistromes in colonic cells of colorectal tumor origin: impact on c-FOS and c-MYC gene expression. , 2012, Molecular endocrinology.

[61]  L. Quarles,et al.  Regulation and function of the FGF23/klotho endocrine pathways. , 2012, Physiological reviews.

[62]  V. Beneš,et al.  Nuclear hormone 1α,25-dihydroxyvitamin D3 elicits a genome-wide shift in the locations of VDR chromatin occupancy , 2011, Nucleic acids research.

[63]  M. Konrad,et al.  Mutations in CYP24A1 and idiopathic infantile hypercalcemia. , 2011, The New England journal of medicine.

[64]  J. Pike,et al.  The mouse RANKL gene locus is defined by a broad pattern of histone H4 acetylation and regulated through distinct distal enhancers , 2011, Journal of cellular biochemistry.

[65]  Jinhu Xiong,et al.  Matrix-embedded cells control osteoclast formation , 2011, Nature Medicine.

[66]  Sneha S. Joshi,et al.  1,25-Dihydroxyvitamin D3 Ameliorates Th17 Autoimmunity via Transcriptional Modulation of Interleukin-17A , 2011, Molecular and Cellular Biology.

[67]  R. D. Nerenz,et al.  Mouse Rankl Expression Is Regulated in T Cells by c-Fos through a Cluster of Distal Regulatory Enhancers Designated the T Cell Control Region* , 2011, The Journal of Biological Chemistry.

[68]  V. Corces,et al.  Enhancer function: new insights into the regulation of tissue-specific gene expression , 2011, Nature Reviews Genetics.

[69]  Timothy J. Durham,et al.  "Systematic" , 1966, Comput. J..

[70]  Liang Shen,et al.  CYP24A1 mutations in idiopathic infantile hypercalcemia. , 2011, The New England journal of medicine.

[71]  Sneha S. Joshi,et al.  25-Dihydroxyvitamin D 3 Ameliorates Th 17 Autoimmunity via Transcriptional Modulation of Interleukin-17 A , 2011 .

[72]  H. DeLuca,et al.  Vitamin D, disease and therapeutic opportunities , 2010, Nature Reviews Drug Discovery.

[73]  G. Blobel,et al.  Do chromatin loops provide epigenetic gene expression states? , 2010, Current opinion in genetics & development.

[74]  Gavin Giovannoni,et al.  A ChIP-seq defined genome-wide map of vitamin D receptor binding: associations with disease and evolution. , 2010, Genome research.

[75]  T. Mikkelsen,et al.  The NIH Roadmap Epigenomics Mapping Consortium , 2010, Nature Biotechnology.

[76]  J. Pike,et al.  Genome-wide analysis of the VDR/RXR cistrome in osteoblast cells provides new mechanistic insight into the actions of the vitamin D hormone , 2010, The Journal of Steroid Biochemistry and Molecular Biology.

[77]  Manolis Kellis,et al.  Discovery and characterization of chromatin states for systematic annotation of the human genome , 2010, Nature Biotechnology.

[78]  M. Cantorna International Immunonutrition Workshop Session 2 : Micronutrients and the immune system Mechanisms underlying the effect of vitamin D on the immune system , 2010 .

[79]  P. Dhawan,et al.  Evidence for a role of prolactin in calcium homeostasis: regulation of intestinal transient receptor potential vanilloid type 6, intestinal calcium absorption, and the 25-hydroxyvitamin D(3) 1alpha hydroxylase gene by prolactin. , 2010, Endocrinology.

[80]  John A. Stamatoyannopoulos,et al.  Cell-type-specific long-range looping interactions identify distant regulatory elements of the CFTR gene , 2010, Nucleic acids research.

[81]  J. Pike,et al.  A Downstream Intergenic Cluster of Regulatory Enhancers Contributes to the Induction of CYP24A1 Expression by 1α,25-Dihydroxyvitamin D3* , 2010, The Journal of Biological Chemistry.

[82]  G. Crabtree,et al.  Chromatin remodelling during development , 2010, Nature.

[83]  R. D. Nerenz,et al.  Multifunctional enhancers regulate mouse and human vitamin D receptor gene transcription. , 2010, Molecular endocrinology.

[84]  D. Bikle,et al.  Vitamin D and the skin , 2010, Journal of Bone and Mineral Metabolism.

[85]  E. Mellanby An Experimental Investigation on Rickets , 2009 .

[86]  M. Gerstein,et al.  RNA-Seq: a revolutionary tool for transcriptomics , 2009, Nature Reviews Genetics.

[87]  H. DeLuca,et al.  TRPV6 is not required for 1α,25-dihydroxyvitamin D3-induced intestinal calcium absorption in vivo , 2008, Proceedings of the National Academy of Sciences.

[88]  V. Corces,et al.  Modulation of CTCF insulator function by transcription of a noncoding RNA. , 2008, Developmental cell.

[89]  M. Hediger,et al.  Active intestinal calcium transport in the absence of transient receptor potential vanilloid type 6 and calbindin-D9k. , 2008, Endocrinology.

[90]  Mark L. Johnson,et al.  Osteocytes, mechanosensing and Wnt signaling. , 2008, Bone.

[91]  R. Weinstein,et al.  Targeted deletion of a distant transcriptional enhancer of the receptor activator of nuclear factor-kappaB ligand gene reduces bone remodeling and increases bone mass. , 2008, Endocrinology.

[92]  L. Bonewald Osteocytes as Dynamic Multifunctional Cells , 2007, Annals of the New York Academy of Sciences.

[93]  N. Selvamurugan,et al.  Parathyroid Hormone Regulates Histone Deacetylases in Osteoblasts , 2007, Annals of the New York Academy of Sciences.

[94]  R. D. Nerenz,et al.  Characterizing Early Events Associated with the Activation of Target Genes by 1,25-Dihydroxyvitamin D3 in Mouse Kidney and Intestine in Vivo* , 2007, Journal of Biological Chemistry.

[95]  J. Adams,et al.  Extra-renal 25-hydroxyvitamin D3-1α-hydroxylase in human health and disease , 2007, The Journal of Steroid Biochemistry and Molecular Biology.

[96]  N. Selvamurugan,et al.  Overexpression of Runx2 directed by the matrix metalloproteinase‐13 promoter containing the AP‐1 and Runx/RD/Cbfa sites alters bone remodeling in vivo , 2006, Journal of cellular biochemistry.

[97]  Sungtae Kim,et al.  Activation of Receptor Activator of NF-κB Ligand Gene Expression by 1,25-Dihydroxyvitamin D3 Is Mediated through Multiple Long-Range Enhancers , 2006, Molecular and Cellular Biology.

[98]  H. DeLuca,et al.  Calbindin D9k knockout mice are indistinguishable from wild-type mice in phenotype and serum calcium level , 2006, Proceedings of the National Academy of Sciences.

[99]  Sungtae Kim,et al.  The human transient receptor potential vanilloid type 6 distal promoter contains multiple vitamin D receptor binding sites that mediate activation by 1,25-dihydroxyvitamin D3 in intestinal cells. , 2006, Molecular endocrinology.

[100]  K. White,et al.  Genetic dissection of phosphate- and vitamin D-mediated regulation of circulating Fgf23 concentrations. , 2005, Bone.

[101]  K. White,et al.  FGF23 and disorders of phosphate homeostasis. , 2005, Cytokine & growth factor reviews.

[102]  Sungtae Kim,et al.  1,25‐Dihydroxyvitamin D3 Stimulates Cyclic Vitamin D Receptor/Retinoid X Receptor DNA‐Binding, Co‐activator Recruitment, and Histone Acetylation in Intact Osteoblasts , 2004, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[103]  B. Nilius,et al.  Calcium absorption across epithelia. , 2005, Physiological reviews.

[104]  Guilin Qiao,et al.  Cardiac hypertrophy in vitamin D receptor knockout mice: role of the systemic and cardiac renin-angiotensin systems. , 2005, American journal of physiology. Endocrinology and metabolism.

[105]  H. DeLuca Overview of general physiologic features and functions of vitamin D. , 2004, The American journal of clinical nutrition.

[106]  R. Wasserman,et al.  Vitamin D and the dual processes of intestinal calcium absorption. , 2004, The Journal of nutrition.

[107]  Jeffrey B. Cheng,et al.  Genetic evidence that the human CYP2R1 enzyme is a key vitamin D 25-hydroxylase. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[108]  J. Welsh,et al.  Effect of Vitamin D3 receptor ablation on murine mammary gland development and tumorigenesis , 2004, The Journal of Steroid Biochemistry and Molecular Biology.

[109]  Bert W O'Malley,et al.  Coregulator function: a key to understanding tissue specificity of selective receptor modulators. , 2004, Endocrine reviews.

[110]  Y. Takeuchi,et al.  FGF‐23 Is a Potent Regulator of Vitamin D Metabolism and Phosphate Homeostasis , 2003, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[111]  J. Welsh,et al.  A crucial role for the vitamin D receptor in experimental inflammatory bowel diseases. , 2003, Molecular endocrinology.

[112]  Jeffrey B. Cheng,et al.  De-orphanization of Cytochrome P450 2R1 , 2003, Journal of Biological Chemistry.

[113]  D. Reinberg,et al.  The mediator coactivator complex: functional and physical roles in transcriptional regulation , 2003, Journal of Cell Science.

[114]  S. Kato,et al.  Dietary Calcium and Phosphorus Ratio Regulates Bone Mineralization and Turnover in Vitamin D Receptor Knockout Mice by Affecting Intestinal Calcium and Phosphorus Absorption , 2003, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[115]  R. Kitazawa,et al.  Vitamin D3 supports osteoclastogenesis via functional vitamin D response element of human RANKL gene promoter , 2003, Journal of cellular biochemistry.

[116]  David L. Lacey,et al.  Osteoclast differentiation and activation , 2003, Nature.

[117]  C. Carlberg Molecular basis of the selective activity of vitamin D analogues , 2003, Journal of cellular biochemistry.

[118]  Jeffrey B. Cheng,et al.  DE-ORPHANIZATION OF CYTOCHROME P450 2R1: A MICROSOMAL VITAMIN D 25-HYDROXYLASE , 2003 .

[119]  J. Pike,et al.  Inhibition of 1,25‐Dihydroxyvitamin D3‐Dependent Transcription by Synthetic LXXLL Peptide Antagonists that Target the Activation Domains of the Vitamin D and Retinoid X Receptors , 2002, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[120]  J. Sundberg,et al.  Vitamin D(3) receptor ablation sensitizes skin to chemically induced tumorigenesis. , 2002, Carcinogenesis.

[121]  R. Kitazawa,et al.  Vitamin D(3) augments osteoclastogenesis via vitamin D-responsive element of mouse RANKL gene promoter. , 2002, Biochemical and biophysical research communications.

[122]  H. Morris,et al.  Hydroxylase enzymes of the vitamin D pathway: expression, function, and regulation. , 2002, Annual review of nutrition.

[123]  M. Galligan,et al.  Distinct retinoid X receptor activation function-2 residues mediate transactivation in homodimeric and vitamin D receptor heterodimeric contexts. , 2001, Journal of molecular endocrinology.

[124]  S. Takeda,et al.  Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[125]  F. Glorieux,et al.  Targeted inactivation of the 25-hydroxyvitamin D(3)-1(alpha)-hydroxylase gene (CYP27B1) creates an animal model of pseudovitamin D-deficiency rickets. , 2001, Endocrinology.

[126]  L. Freedman,et al.  Mechanisms of gene regulation by vitamin D(3) receptor: a network of coactivator interactions. , 2000, Gene.

[127]  C. Glass,et al.  Molecular determinants of nuclear receptor-corepressor interaction. , 1999, Genes & development.

[128]  R. Baron,et al.  Rescue of the Skeletal Phenotype of Vitamin D Receptor-Ablated Mice in the Setting of Normal Mineral Ion Homeostasis: Formal Histomorphometric and Biomechanical Analyses1. , 1999, Endocrinology.

[129]  R. St-Arnaud,et al.  Targeted inactivation of vitamin D hydroxylases in mice. , 1999, Bone.

[130]  T. Martin,et al.  Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. , 1999, Endocrine reviews.

[131]  R. Baron,et al.  Printed in U.S.A. Copyright © 1999 by The Endocrine Society Rescue of the Skeletal Phenotype of Vitamin D Receptor- Ablated Mice in the Setting of Normal Mineral Ion , 2022 .

[132]  C. Glass,et al.  Determinants of coactivator LXXLL motif specificity in nuclear receptor transcriptional activation. , 1998, Genes & development.

[133]  C. Glass,et al.  Interactions controlling the assembly of nuclear-receptor heterodimers and co-activators , 1998, Nature.

[134]  F. Glorieux,et al.  Editorial: 24, 25-Dihydroxyvitamin D-Active Metabolite or Inactive Catabolite? , 1998, Endocrinology.

[135]  D. Lacey,et al.  Osteoprotegerin Ligand Is a Cytokine that Regulates Osteoclast Differentiation and Activation , 1998, Cell.

[136]  S. Mochizuki,et al.  Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro. , 1998, Endocrinology.

[137]  F. Glorieux,et al.  24,25-Dihydroxyvitamin D--active metabolite or inactive catabolite? , 1998, Endocrinology.

[138]  W. Miller,et al.  Cloning of human 25-hydroxyvitamin D-1 alpha-hydroxylase and mutations causing vitamin D-dependent rickets type 1. , 1997, Molecular endocrinology.

[139]  H. Yamamoto,et al.  Structural organization of the human vitamin D receptor chromosomal gene and its promoter. , 1997, Molecular endocrinology.

[140]  K. Ozono,et al.  Functional Assessment of Two Vitamin D-responsive Elements in the Rat 25-Hydroxyvitamin D3 24-Hydroxylase Gene* , 1996, The Journal of Biological Chemistry.

[141]  J. Pike,et al.  Transcriptional activation and dimerization functions in the human vitamin D receptor. , 1996, Molecular endocrinology.

[142]  P. Malloy,et al.  A novel mutation in the deoxyribonucleic acid-binding domain of the vitamin D receptor causes hereditary 1,25-dihydroxyvitamin D-resistant rickets. , 1996, The Journal of clinical endocrinology and metabolism.

[143]  R. Evans,et al.  The RXR heterodimers and orphan receptors , 1995, Cell.

[144]  H. DeLuca,et al.  Two Vitamin D Response Elements Function in the Rat 1,25-Dihydroxyvitamin D 24-Hydroxylase Promoter (*) , 1995, The Journal of Biological Chemistry.

[145]  M. Carlson,et al.  The SNF/SWI family of global transcriptional activators. , 1994, Current opinion in cell biology.

[146]  Keiichi,et al.  Identification of a vitamin D-responsive element in the 5'-flanking region of the rat 25-hydroxyvitamin D3 24-hydroxylase gene. , 1994, The Journal of biological chemistry.

[147]  H. DeLuca,et al.  Identification of a vitamin D-response element in the rat calcidiol (25-hydroxyvitamin D3) 24-hydroxylase gene. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[148]  S. Christakos,et al.  Identification of sequence elements in mouse calbindin-D28k gene that confer 1,25-dihydroxyvitamin D3- and butyrate-inducible responses. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[149]  D. Bikle,et al.  Vitamin D, calcium, and epidermal differentiation. , 1993, Endocrine reviews.

[150]  Z. Hochberg,et al.  Calcium therapy for calcitriol-resistant rickets. , 1992, The Journal of pediatrics.

[151]  H. DeLuca,et al.  Sequences in the human parathyroid hormone gene that bind the 1,25-dihydroxyvitamin D3 receptor and mediate transcriptional repression in response to 1,25-dihydroxyvitamin D3. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[152]  K. Umesono,et al.  Retinoid X receptor interacts with nuclear receptors in retinoic acid, thyroid hormone and vitamin D3 signalling , 1992, Nature.

[153]  J. Pike,et al.  Vitamin D receptor interaction with specific DNA. Association as a 1,25-dihydroxyvitamin D3-modulated heterodimer. , 1991, The Journal of biological chemistry.

[154]  K. Ozono,et al.  A 55-kilodalton accessory factor facilitates vitamin D receptor DNA binding. , 1991, Molecular endocrinology.

[155]  B. O’Malley,et al.  Genetic defects of the 1,25-dihydroxyvitamin D3 receptor. , 1991, Journal of receptor research.

[156]  K. Ozono,et al.  The vitamin D-responsive element in the human osteocalcin gene. Association with a nuclear proto-oncogene enhancer. , 1990, The Journal of biological chemistry.

[157]  K. Ozono,et al.  Vitamin D receptor interaction with specific DNA requires a nuclear protein and 1,25-dihydroxyvitamin D3. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[158]  Z. Hochberg,et al.  The molecular basis of hereditary 1,25-dihydroxyvitamin D3 resistant rickets in seven related families. , 1990, The Journal of clinical investigation.

[159]  H. DeLuca,et al.  Identification of a DNA sequence responsible for binding of the 1,25-dihydroxyvitamin D3 receptor and 1,25-dihydroxyvitamin D3 enhancement of mouse secreted phosphoprotein 1 (SPP-1 or osteopontin) gene expression. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[160]  H. DeLuca,et al.  The vitamin D system: 1990. , 1990, Kidney international. Supplement.

[161]  U. Liberman,et al.  A unique point mutation in the human vitamin D receptor chromosomal gene confers hereditary resistance to 1,25-dihydroxyvitamin D3. , 1990, Molecular endocrinology.

[162]  M. Noda Identification of a RNA sequence responsible for binding of the 1,25-dihydroxyvitamin D3 enhancement of mouse secreted phosphoprotein 1 (Spp-1 or osteopontin) gene expression , 1990 .

[163]  B. O’Malley,et al.  Mutant vitamin D receptors which confer hereditary resistance to 1,25-dihydroxyvitamin D3 in humans are transcriptionally inactive in vitro. , 1989, The Journal of biological chemistry.

[164]  B. O’Malley,et al.  An ochre mutation in the vitamin D receptor gene causes hereditary 1,25-dihydroxyvitamin D3-resistant rickets in three families. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[165]  J. Pike,et al.  Sequence elements in the human osteocalcin gene confer basal activation and inducible response to hormonal vitamin D3. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[166]  B. O’Malley,et al.  Functional domains of the human vitamin D3 receptor regulate osteocalcin gene expression. , 1989, Molecular endocrinology.

[167]  S. Christakos,et al.  Vitamin D-dependent calcium binding proteins: chemistry, distribution, functional considerations, and molecular biology. , 1989, Endocrine reviews.

[168]  G. Stein,et al.  Osteocalcin: characterization and regulated expression of the rat gene. , 1989, Connective tissue research.

[169]  B. O’Malley,et al.  Point mutations in the human vitamin D receptor gene associated with hypocalcemic rickets. , 1988, Science.

[170]  R. Evans,et al.  The steroid and thyroid hormone receptor superfamily. , 1988, Science.

[171]  J. Shine,et al.  Cloning and expression of full-length cDNA encoding human vitamin D receptor. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[172]  H. DeLuca The vitamin D story: a collaborative effort of basic science and clinical medicine 1 , 1988, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[173]  H. DeLuca,et al.  Isolation and expression of rat 1,25-dihydroxyvitamin D3 receptor cDNA. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[174]  W. Butler,et al.  1,25-Dihydroxyvitamin D3 regulates the biosynthesis of osteopontin, a bone-derived cell attachment protein, in clonal osteoblast-like osteosarcoma cells. , 1987, Collagen and related research.

[175]  M. Haussler,et al.  Molecular cloning of complementary DNA encoding the avian receptor for vitamin D. , 1987, Science.

[176]  M. Haussler,et al.  Vitamin D3--resistant fibroblasts have immunoassayable 1,25-dihydroxyvitamin D3 receptors. , 1984, Science.

[177]  U. Liberman,et al.  A cellular defect in hereditary vitamin-D-dependent rickets type II: defective nuclear uptake of 1,25-dihydroxyvitamin D in cultured skin fibroblasts. , 1981, The New England journal of medicine.

[178]  P. Price,et al.  1,25-Dihydroxyvitamin D3 increases synthesis of the vitamin K-dependent bone protein by osteosarcoma cells. , 1980, The Journal of biological chemistry.

[179]  M. Haussler,et al.  Physiological importance of vitamin D metabolism. , 1980, Progress in biochemical pharmacology.

[180]  M. Haussler,et al.  Purification of chicken intestinal receptor for 1,25-dihydroxyvitamin D. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[181]  J. Omdahl Interaction of the parathyroid and 1,25-dihydroxyvitamin D3 in the control of renal 25-hydroxyvitamin D3 metabolism. , 1978, The Journal of biological chemistry.

[182]  H. DeLuca,et al.  Vitamin-D-dependent rickets type II. Resistance of target organs to 1,25-dihydroxyvitamin D. , 1978, The New England journal of medicine.

[183]  Judith Braeman,et al.  CHROMOSOME DAMAGE AFTER RADIOTHERAPY , 1975, The Lancet.

[184]  M. Haussler,et al.  1α,25-Dihydroxycholecalciferol Receptors in Intestine I. ASSOCIATION OF 1α,25-DIHYDROXYCHOLECALCIFEROL WITH INTESTINAL MUCOSA CHROMATIN , 1974 .

[185]  M. Haussler,et al.  1 Alpha,25-dihydroxycholecalciferol receptors in intestine. II. Temperature-dependent transfer of the hormone to chromatin via a specific cytosol receptor. , 1974, The Journal of biological chemistry.

[186]  M. Haussler,et al.  1 Alpha,25-dihydroxycholecalciferol receptors in intestine. I. Association of 1 alpha,25-dihydroxycholecalciferol with intestinal mucosa chromatin. , 1974, The Journal of biological chemistry.

[187]  H. DeLuca,et al.  Pathogenesis of Hereditary Vitamin-D-Dependent Rickets , 1973 .

[188]  H. DeLuca,et al.  Pathogenesis of hereditary vitamin-D-dependent rickets. An inborn error of vitamin D metabolism involving defective conversion of 25-hydroxyvitamin D to 1 alpha,25-dihydroxyvitamin D. , 1973, The New England journal of medicine.

[189]  H. DeLuca,et al.  Control of 25-hydroxycholecalciferol metabolism by parathyroid glands. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[190]  H. DeLuca,et al.  Identification of 1,25-dihydroxycholecalciferol, a form of vitamin D3 metabolically active in the intestine. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[191]  M. Haussler,et al.  The association of a metabolite of vitamin D3 with intestinal mucosa chromatin in vivo. , 1968, The Journal of biological chemistry.

[192]  A. Windaus,et al.  Über das antirachitisch wirksame Bestrahlungsprodukt ans 7-Dehydro-cholesterin. , 1936 .

[193]  H. Steenbock,et al.  FAT-SOLUBLE VITAMINS XVII. THE INDUCTION OF GROWTH-PROMOTING AND CALCIFYING PROPERTIES IN A RATION BY EXPOSURE TO ULTRA-VIOLET LIGHT , 1924 .

[194]  E. V. Mccollum,et al.  STUDIES ON EXPERIMENTAL RICKETS XXI. AN EXPERIMENTAL DEMONSTRATION OF THE EXISTENCE OF A VITAMIN WHICH PROMOTES CALCIUM DEPOSITION , 1922 .