Snake venom metalloproteinases: structure, function and relevance to the mammalian ADAM/ADAMTS family proteins.

[1]  F. Markland,et al.  Snake venom metalloproteinases. , 2013, Toxicon : official journal of the International Society on Toxinology.

[2]  S. Takeda VAP1—Snake Venom Homolog of Mammalian ADAMs , 2011 .

[3]  J. Fox,et al.  High resolution analysis of snake venom metalloproteinase (SVMP) peptide bond cleavage specificity using proteome based peptide libraries and mass spectrometry. , 2011, Journal of proteomics.

[4]  S. Serrano,et al.  Disintegrin-like/cysteine-rich domains of the reprolysin HF3: Site-directed mutagenesis reveals essential role of specific residues. , 2011, Biochimie.

[5]  H. Mejdoub,et al.  Leberagin-C, A disintegrin-like/cysteine-rich protein from Macrovipera lebetina transmediterranea venom, inhibits alphavbeta3 integrin-mediated cell adhesion. , 2010, Matrix biology : journal of the International Society for Matrix Biology.

[6]  R. Arni,et al.  Structural studies of BmooMPalpha-I, a non-hemorrhagic metalloproteinase from Bothrops moojeni venom. , 2010, Toxicon : official journal of the International Society on Toxinology.

[7]  J. Jeyakanthan,et al.  Structures of two elapid snake venom metalloproteases with distinct activities highlight the disulfide patterns in the D domain of ADAMalysin family proteins , 2009, Journal of Structural Biology.

[8]  J. Takagi,et al.  Crystal structures of the noncatalytic domains of ADAMTS13 reveal multiple discontinuous exosites for von Willebrand factor , 2009, Proceedings of the National Academy of Sciences.

[9]  S. Apte A Disintegrin-like and Metalloprotease (Reprolysin-type) with Thrombospondin Type 1 Motif (ADAMTS) Superfamily: Functions and Mechanisms* , 2009, The Journal of Biological Chemistry.

[10]  Heli Liu,et al.  Structural Characterization of the Ectodomain of a Disintegrin and Metalloproteinase-22 (ADAM22), a Neural Adhesion Receptor Instead of Metalloproteinase , 2009, The Journal of Biological Chemistry.

[11]  J. Zang,et al.  Structural basis of the autolysis of AaHIV suggests a novel target recognizing model for ADAM/reprolysin family proteins. , 2009, Biochemical and biophysical research communications.

[12]  Torsten Lingott,et al.  High-resolution crystal structure of the snake venom metalloproteinase BaP1 complexed with a peptidomimetic: insight into inhibitor binding. , 2009, Biochemistry.

[13]  D. Lane,et al.  Essential role of the disintegrin-like domain in ADAMTS13 function. , 2009, Blood.

[14]  S. Takeda Three-dimensional domain architecture of the ADAM family proteinases. , 2009, Seminars in cell & developmental biology.

[15]  J. Fox,et al.  Timeline of key events in snake venom metalloproteinase research. , 2009, Journal of proteomics.

[16]  F. Gomis-Rüth Catalytic Domain Architecture of Metzincin Metalloproteases* , 2009, The Journal of Biological Chemistry.

[17]  R. Kini,et al.  Scientific and standardization committee communications: classification and nomenclature of snake venom C‐type lectins and related proteins , 2009, Journal of thrombosis and haemostasis : JTH.

[18]  M. Cominetti,et al.  The three-dimensional structure of bothropasin, the main hemorrhagic factor from Bothrops jararaca venom: insights for a new classification of snake venom metalloprotease subgroups. , 2008, Toxicon : official journal of the International Society on Toxinology.

[19]  J. Fox,et al.  Activation of leukocyte rolling by the cysteine‐rich domain and the hyper‐variable region of HF3, a snake venom hemorrhagic metalloproteinase , 2008, FEBS letters.

[20]  Narmada Thanki,et al.  CDD: specific functional annotation with the Conserved Domain Database , 2008, Nucleic Acids Res..

[21]  C. C. Hsu,et al.  A snake venom metalloproteinase, kistomin, cleaves platelet glycoprotein VI and impairs platelet functions , 2008, Journal of thrombosis and haemostasis : JTH.

[22]  J. Sadler,et al.  Extensive contacts between ADAMTS13 exosites and von Willebrand factor domain A2 contribute to substrate specificity. , 2008, Blood.

[23]  D. Edwards,et al.  The ADAM metalloproteinases , 2008, Molecular Aspects of Medicine.

[24]  J. Fox,et al.  Insights into and speculations about snake venom metalloproteinase (SVMP) synthesis, folding and disulfide bond formation and their contribution to venom complexity , 2008, The FEBS journal.

[25]  A. Soares,et al.  Isolation and structural characterization of a new fibrin(ogen)olytic metalloproteinase from Bothrops moojeni snake venom. , 2008, Toxicon : official journal of the International Society on Toxinology.

[26]  Gillian Murphy,et al.  Reappraising metalloproteinases in rheumatoid arthritis and osteoarthritis: destruction or repair? , 2008, Nature Clinical Practice Rheumatology.

[27]  A. Tomasselli,et al.  High Resolution Crystal Structure of the Catalytic Domain of ADAMTS-5 (Aggrecanase-2)* , 2008, Journal of Biological Chemistry.

[28]  L. Mosyak,et al.  Crystal structures of the two major aggrecan degrading enzymes, ADAMTS4 and ADAMTS5 , 2008, Protein science : a publication of the Protein Society.

[29]  S. Takeda,et al.  Crystal structure of RVV‐X: An example of evolutionary gain of specificity by ADAM proteinases , 2007, FEBS letters.

[30]  M. Moroi,et al.  Snake venom metalloproteinases, crotarhagin and alborhagin, induce ectodomain shedding of the platelet collagen receptor, glycoprotein VI , 2007, Thrombosis and Haemostasis.

[31]  A. Parker,et al.  Crystal structures of human ADAMTS-1 reveal a conserved catalytic domain and a disintegrin-like domain with a fold homologous to cysteine-rich domains. , 2007, Journal of molecular biology.

[32]  J. Fox,et al.  Interaction of the cysteine‐rich domain of snake venom metalloproteinases with the A1 domain of von Willebrand factor promotes site‐specific proteolysis of von Willebrand factor and inhibition of von Willebrand factor‐mediated platelet aggregation , 2007, The FEBS journal.

[33]  S. Takeda,et al.  Crystal structures of catrocollastatin/VAP2B reveal a dynamic, modular architecture of ADAM/adamalysin/reprolysin family proteins , 2007, FEBS letters.

[34]  Y. Okada,et al.  ADAMs in cancer cell proliferation and progression , 2007, Cancer science.

[35]  Deyu Wang,et al.  The Cysteine-rich Domain of Snake Venom Metalloproteinases Is a Ligand for von Willebrand Factor A Domains , 2006, Journal of Biological Chemistry.

[36]  S. Takeda,et al.  Crystallization and preliminary X-ray crystallographic analysis of two vascular apoptosis-inducing proteins (VAPs) from Crotalus atrox venom. , 2006, Acta crystallographica. Section F, Structural biology and crystallization communications.

[37]  S. Takeda,et al.  Crystal structures of VAP1 reveal ADAMs' MDC domain architecture and its unique C‐shaped scaffold , 2006, The EMBO journal.

[38]  Z. Rao,et al.  Crystal structure of a non-hemorrhagic fibrin(ogen)olytic metalloproteinase complexed with a novel natural tri-peptide inhibitor from venom of Agkistrodon acutus. , 2005, Journal of structural biology.

[39]  C. Blobel,et al.  Adam Meets Eph: An ADAM Substrate Recognition Module Acts as a Molecular Switch for Ephrin Cleavage In trans , 2005, Cell.

[40]  Deyu Wang,et al.  Function of the cysteine-rich domain of the haemorrhagic metalloproteinase atrolysin A: targeting adhesion proteins collagen I and von Willebrand factor. , 2005, The Biochemical journal.

[41]  M. Perbandt,et al.  Crystal structure of the disintegrin heterodimer from saw-scaled viper (Echis carinatus) at 1.9 A resolution. , 2005, Biochemistry.

[42]  J. Calvete,et al.  Snake venom disintegrins: evolution of structure and function. , 2005, Toxicon : official journal of the International Society on Toxinology.

[43]  J. Fox,et al.  Structural considerations of the snake venom metalloproteinases, key members of the M12 reprolysin family of metalloproteinases. , 2005, Toxicon : official journal of the International Society on Toxinology.

[44]  A. Moura-da-Silva,et al.  Jararhagin and its multiple effects on hemostasis. , 2005, Toxicon : official journal of the International Society on Toxinology.

[45]  T. Morita Structures and functions of snake venom CLPs (C-type lectin-like proteins) with anticoagulant-, procoagulant-, and platelet-modulating activities. , 2005, Toxicon : official journal of the International Society on Toxinology.

[46]  J. Gutiérrez,et al.  Hemorrhage induced by snake venom metalloproteinases: biochemical and biophysical mechanisms involved in microvessel damage. , 2005, Toxicon : official journal of the International Society on Toxinology.

[47]  A. Kamiguti Platelets as targets of snake venom metalloproteinases. , 2005, Toxicon : official journal of the International Society on Toxinology.

[48]  Sujata Sharma,et al.  Crystal structure of schistatin, a disintegrin homodimer from saw-scaled viper (Echis carinatus) at 2.5 A resolution. , 2004, Journal of molecular biology.

[49]  Jun Zou,et al.  Crystal structure of the catalytic domain of human ADAM33. , 2004, Journal of molecular biology.

[50]  Wan-yu Wang,et al.  A new protein structure of P-II class snake venom metalloproteinases: it comprises metalloproteinase and disintegrin domains. , 2003, Biochemical and biophysical research communications.

[51]  Y. Fujii,et al.  Crystal structure of trimestatin, a disintegrin containing a cell adhesion recognition motif RGD. , 2003, Journal of molecular biology.

[52]  J. Fox,et al.  Amino acid sequence and crystal structure of BaP1, a metalloproteinase from Bothrops asper snake venom that exerts multiple tissue‐damaging activities , 2003, Protein science : a publication of the Protein Society.

[53]  J. Fox,et al.  Identification of sites in the cysteine‐rich domain of the class P‐III snake venom metalloproteinases responsible for inhibition of platelet function , 2003, FEBS letters.

[54]  F. Gomis-Rüth,et al.  Structural aspects of the metzincin clan of metalloendopeptidases , 2003, Molecular biotechnology.

[55]  A. Gaultier,et al.  The cysteine-rich domain regulates ADAM protease function in vivo , 2002, The Journal of cell biology.

[56]  T. Morita,et al.  A new gene structure of the disintegrin family: a subunit of dimeric disintegrin has a short coding region. , 2002, Biochemistry.

[57]  Tomoko Takahashi,et al.  Molecular cloning of HR1a and HR1b, high molecular hemorrhagic factors, from Trimeresurus flavoviridis venom. , 2002, Toxicon : official journal of the International Society on Toxinology.

[58]  A. H. Wang,et al.  The 1.35 A structure of cadmium-substituted TM-3, a snake-venom metalloproteinase from Taiwan habu: elucidation of a TNFalpha-converting enzyme-like active-site structure with a distorted octahedral geometry of cadmium. , 2002, Acta crystallographica. Section D, Biological crystallography.

[59]  A. Gaultier,et al.  ADAM13 Disintegrin and Cysteine-rich Domains Bind to the Second Heparin-binding Domain of Fibronectin* , 2002, The Journal of Biological Chemistry.

[60]  Wen-Bin Wu,et al.  Crotalin, a vWF and GP Ib Cleaving Metalloproteinase from Venom of Crotalus atrox , 2001, Thrombosis and Haemostasis.

[61]  J. Subbi,et al.  Factor X activator from Vipera lebetina snake venom, molecular characterization and substrate specificity. , 2001, Biochimica et biophysica acta.

[62]  S. C. Chang,et al.  Purification, molecular cloning and mechanism of action of graminelysin I, a snake-venom-derived metalloproteinase that induces apoptosis of human endothelial cells. , 2001, The Biochemical journal.

[63]  Z. Fujimoto,et al.  Crystal structure of an anticoagulant protein in complex with the Gla domain of factor X , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[64]  T. Morita,et al.  Purification, cDNA cloning and characterization of the vascular apoptosis-inducing protein, HV1, from Trimeresurus flavoviridis. , 2001, European journal of biochemistry.

[65]  J. Rosing,et al.  Snake Venom Activators of Factor X: An Overview , 2001, Pathophysiology of Haemostasis and Thrombosis.

[66]  P. Qiu,et al.  Thrombolysis effect with FIIa from Agkistrodon acutus venom in different thrombosis model. , 2001, Acta pharmacologica Sinica.

[67]  R. Zingali,et al.  The Disintegrin-like Domain of the Snake Venom Metalloprotease Alternagin Inhibits α2β1 Integrin-Mediated Cell Adhesion , 2000 .

[68]  J. Fox,et al.  cDNA cloning and characterization of vascular apoptosis-inducing protein 1. , 2000, Biochemical and biophysical research communications.

[69]  J. Fox,et al.  Primary structure and functional characterization of bilitoxin-1, a novel dimeric P-II snake venom metalloproteinase from Agkistrodon bilineatus venom. , 2000, Archives of biochemistry and biophysics.

[70]  R. Fässler,et al.  The Cysteine-Rich Domain of Human Adam 12 Supports Cell Adhesion through Syndecans and Triggers Signaling Events That Lead to β1 Integrin–Dependent Cell Spreading , 2000, The Journal of cell biology.

[71]  R. Black,et al.  Functional Analysis of the Domain Structure of Tumor Necrosis Factor-α Converting Enzyme* , 2000, The Journal of Biological Chemistry.

[72]  Q. Liu,et al.  Molecular cloning and sequence analysis of cDNA encoding haemorrhagic toxin acutolysin A from Agkistrodon acutus. , 1999, Toxicon : official journal of the International Society on Toxinology.

[73]  M. Teng,et al.  Structure of acutolysin-C, a haemorrhagic toxin from the venom of Agkistrodon acutus, providing further evidence for the mechanism of the pH-dependent proteolytic reaction of zinc metalloproteinases. , 1999, Acta crystallographica. Section D, Biological crystallography.

[74]  O. Jeon,et al.  Molecular cloning and functional characterization of a snake venom metalloprotease. , 1999, European journal of biochemistry.

[75]  F. Markland Snake venoms and the hemostatic system. , 1998, Toxicon : official journal of the International Society on Toxinology.

[76]  H. Mizuno,et al.  Coagulation factor X-binding protein from Deinagkistrodon acutus venom is a Gla domain-binding protein. , 1998, Biochemistry.

[77]  M. Teng,et al.  Crystal structures of acutolysin A, a three-disulfide hemorrhagic zinc metalloproteinase from the snake venom of Agkistrodon acutus. , 1998, Journal of molecular biology.

[78]  K. Titani,et al.  Purification and Characterization of Kaouthiagin, a von Willebrand Factor-Binding and -Cleaving Metalloproteinase from Naja kaouthia Cobra Venom , 1998, Thrombosis and Haemostasis.

[79]  H. Hayashi,et al.  Two vascular apoptosis-inducing proteins from snake venom are members of the metalloprotease/disintegrin family. , 1998, European journal of biochemistry.

[80]  R. Huber,et al.  Crystal structure of the catalytic domain of human tumor necrosis factor-alpha-converting enzyme. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[81]  T. Morita,et al.  Purification and characterization of a Ca2+ -dependent prothrombin activator, multactivase, from the venom of Echis multisquamatus. , 1997, Journal of biochemistry.

[82]  J. Fox,et al.  Sequence and biological activity of catrocollastatin-C: a disintegrin-like/cysteine-rich two-domain protein from Crotalus atrox venom. , 1997, Archives of biochemistry and biophysics.

[83]  H. Hayashi,et al.  Purification of a vascular apoptosis-inducing factor from hemorrhagic snake venom. , 1997, Biochemical and biophysical research communications.

[84]  M. Lambert,et al.  Cloning of a disintegrin metalloproteinase that processes precursor tumour-necrosis factor-α , 1997, Nature.

[85]  Nicole Nelson,et al.  A metalloproteinase disintegrin that releases tumour-necrosis factor-α from cells , 1997, Nature.

[86]  M. Teng,et al.  Purification, characterization and conformational analysis of a haemorrhagin from the venom of Agkistrodon acutus. , 1997, Toxicon : official journal of the International Society on Toxinology.

[87]  K. Matsushima,et al.  Molecular Cloning of a Gene Encoding a New Type of Metalloproteinase-disintegrin Family Protein with Thrombospondin Motifs as an Inflammation Associated Gene* , 1997, The Journal of Biological Chemistry.

[88]  C. Ward,et al.  Mocarhagin, a novel cobra venom metalloproteinase, cleaves the platelet von Willebrand factor receptor glycoprotein Ibalpha. Identification of the sulfated tyrosine/anionic sequence Tyr-276-Glu-282 of glycoprotein Ibalpha as a binding site for von Willebrand factor and alpha-thrombin. , 1996, Biochemistry.

[89]  T. Morita,et al.  Isolation and Characterization of Carinactivase, a Novel Prothrombin Activator in Echis carinatus Venom with a Unique Catalytic Mechanism (*) , 1996, The Journal of Biological Chemistry.

[90]  J. Fox,et al.  Structural interaction of natural and synthetic inhibitors with the venom metalloproteinase, atrolysin C (form d). , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[91]  T. Wolfsberg,et al.  ADAM, a widely distributed and developmentally regulated gene family encoding membrane proteins with a disintegrin and metalloprotease domain. , 1995, Developmental biology.

[92]  Q. Zhou,et al.  Molecular cloning and expression of catrocollastatin, a snake-venom protein from Crotalus atrox (western diamondback rattlesnake) which inhibits platelet adhesion to collagen. , 1995, The Biochemical journal.

[93]  M. Paine,et al.  cDNA cloning and deduced amino acid sequence of prothrombin activator (ecarin) from Kenyan Echis carinatus venom. , 1995, Biochemistry.

[94]  K. Titani,et al.  A 28 kDa-protein with disintegrin-like structure (jararhagin-C) purified from Bothrops jararaca venom inhibits collagen- and ADP-induced platelet aggregation. , 1994, Biochemical and biophysical research communications.

[95]  D. Gowda,et al.  Factor X-activating glycoprotein of Russell's viper venom. Polypeptide composition and characterization of the carbohydrate moieties. , 1994, The Journal of biological chemistry.

[96]  S. Chiou,et al.  Characterization of three fibrinogenolytic proteases isolated from the venom of Taiwan habu (Trimeresurus mucrosquamatus). , 1993, Biochemistry and molecular biology international.

[97]  R. Huber,et al.  Activation of snake venom metalloproteinases by a cysteine switch‐like mechanism , 1993, FEBS letters.

[98]  C. Teng,et al.  Antiplatelet protease, kistomin, selectively cleaves human platelet glycoprotein Ib. , 1993, Biochimica et biophysica acta.

[99]  W. Bode,et al.  First structure of a snake venom metalloproteinase: a prototype for matrix metalloproteinases/collagenases. , 1993, The EMBO journal.

[100]  W. Bode,et al.  Astacins, serralysins, snake venom and matrix metalloproteinases exhibit identical zinc‐binding environments (HEXXHXXGXXH and Met‐turn) and topologies and should be grouped into a common family, the ‘metzincins’ , 1993, FEBS letters.

[101]  S. Iwanaga,et al.  Primary structures of platelet aggregation inhibitors (disintegrins) autoproteolytically released from snake venom hemorrhagic metalloproteinases and new fluorogenic peptide substrates for these enzymes. , 1993, Journal of biochemistry.

[102]  M. Paine,et al.  Purification, cloning, and molecular characterization of a high molecular weight hemorrhagic metalloprotease, jararhagin, from Bothrops jararaca venom. Insights into the disintegrin gene family. , 1992, The Journal of biological chemistry.

[103]  S. Iwanaga,et al.  Structure and function of snake venom metalloproteinase family , 1992 .

[104]  S. Iwanaga,et al.  Coagulation factor X activating enzyme from Russell's viper venom (RVV-X). A novel metalloproteinase with disintegrin (platelet aggregation inhibitor)-like and C-type lectin-like domains. , 1992, The Journal of biological chemistry.

[105]  J. Fox,et al.  Sequence of a cDNA clone encoding the zinc metalloproteinase hemorrhagic toxin e from Crotalus atrox: evidence for signal, zymogen, and disintegrin-like structures. , 1992, Biochemistry.

[106]  T. Wolfsberg,et al.  A potential fusion peptide and an integrin ligand domain in a protein active in sperm–egg fusion , 1992, Nature.

[107]  R. Kini,et al.  Structural domains in venom proteins: evidence that metalloproteinases and nonenzymatic platelet aggregation inhibitors (disintegrins) from snake venoms are derived by proteolysis from a common precursor. , 1992, Toxicon : official journal of the International Society on Toxinology.

[108]  S. Iwanaga,et al.  Primary structure of a hemorrhagic metalloproteinase, HT-2, isolated from the venom of Crotalus ruber ruber. , 1990, Journal of biochemistry.

[109]  S. Iwanaga,et al.  The complete amino acid sequence of the high molecular mass hemorrhagic protein HR1B isolated from the venom of Trimeresurus flavoviridis. , 1990, The Journal of biological chemistry.

[110]  J. Fox,et al.  Degradation of extracellular matrix proteins by hemorrhagic metalloproteinases. , 1989, Archives of biochemistry and biophysics.

[111]  S. Iwanaga,et al.  Primary structure of H2-proteinase, a non-hemorrhagic metalloproteinase, isolated from the venom of the habu snake, Trimeresurus flavoviridis. , 1989, Journal of biochemistry.

[112]  Y. Ozeki,et al.  Primary structure of hemorrhagic protein, HR2a, isolated from the venom of Trimeresurus flavoviridis. , 1989, Journal of biochemistry.

[113]  S. Niewiarowski,et al.  Trigramin. A low molecular weight peptide inhibiting fibrinogen interaction with platelet receptors expressed on glycoprotein IIb-IIIa complex. , 1987, The Journal of biological chemistry.

[114]  J. Fox,et al.  Substrate specificities and inhibition of two hemorrhagic zinc proteases Ht-c and Ht-d from Crotalus atrox venom. , 1986, European journal of biochemistry.

[115]  T. Morita,et al.  Localization of the structural difference between bovine blood coagulation factors X1 and X2 to tyrosine 18 in the activation peptide. , 1986, The Journal of biological chemistry.

[116]  W. Skogen,et al.  The role of the Gla domain in the activation of bovine coagulation factor X by the snake venom protein XCP. , 1983, Biochemical and biophysical research communications.

[117]  L. F. Kress,et al.  Enzymatic inactivation of human serum proteinase inhibitors by snake venom proteinases. , 1978, Biochemical and biophysical research communications.

[118]  H. Hemker,et al.  Activation of decarboxyfactor X by a protein from Russell's viper venom. Purification and partial characterization of activated decarboxyfactor X. , 1978, Biochimica et biophysica acta.

[119]  Tomoko Takahashi,et al.  Purification and some properties of two hemorrhagic principles (HR2a and HR2b) in the venom of Trimeresurus flavoviridis; complete separation of the principles from proteolytic activity. , 1970, Biochimica et biophysica acta.

[120]  T. Suzuki,et al.  STUDIES ON SNAKE VENOMS. XIV. HYDROLYSES OF INSULIN B CHAIN AND GLUCAGON BY PROTEINASE C FROM AGKISTRODON HALYS BLOMHOFFI VENOM. , 1963, Journal of biochemistry.

[121]  M. Satake,et al.  Studies on Snake Venom , 1963 .

[122]  R. Kini,et al.  Toxins and Hemostasis , 2011 .

[123]  E. Siigur,et al.  Activation of Factor X by Snake Venom Proteases , 2010 .

[124]  S. Takeda Structural Aspects of the Factor X Activator RVV-X from Russell’s Viper Venom , 2010 .

[125]  P. Ho,et al.  A prothrombin activator from Bothrops erythromelas (jararaca-da-seca) snake venom: characterization and molecular cloning. , 2003, The Biochemical journal.

[126]  J. Fox,et al.  Inhibition of platelet aggregation by the recombinant cysteine-rich domain of the hemorrhagic snake venom metalloproteinase, atrolysin A. , 2000, Archives of biochemistry and biophysics.

[127]  G. Bailey Enzymes from snake venom , 1998 .

[128]  T. Kumasaka,et al.  Crystal structure of H2-proteinase from the venom of Trimeresurus flavoviridis. , 1996, Journal of biochemistry.

[129]  J. Fox,et al.  Snake venom metalloendopeptidases: reprolysins. , 1995, Methods in enzymology.

[130]  J. Gutiérrez,et al.  Isolation and characterization of a metalloproteinase with weak hemorrhagic activity from the venom of the snake Bothrops asper (terciopelo). , 1995, Toxicon : official journal of the International Society on Toxinology.

[131]  J. Fox,et al.  Atrolysins: metalloproteinases from Crotalus atrox venom. , 1995, Methods in enzymology.

[132]  J. Fox,et al.  Hemorrhagic metalloproteinases from snake venoms. , 1994, Pharmacology & therapeutics.

[133]  S. Iwanaga,et al.  Snake venom hemorrhagic and nonhemorrhagic metalloendopeptidases. , 1993, Methods in enzymology.

[134]  B. Wittmann-Liebold Methods in Protein Sequence Analysis , 1989, Springer Berlin Heidelberg.

[135]  M. Assakura,et al.  Isolation and characterization of a proteolytic enzyme from the venom of the snake Bothrops jararaca (Jararaca). , 1982, Toxicon : official journal of the International Society on Toxinology.

[136]  S. Iwanaga,et al.  [24] Prothrombin activator from Echis carinatus venom , 1981 .

[137]  T. Suzuki,et al.  Enzymes in Snake Venom , 1979 .

[138]  S. Iwanaga,et al.  [37] Proteinases from the venom of Agkistrodon halys blomhoffii , 1976 .