Dynamics for ginzburg-landau vortices under a mixed flow
暂无分享,去创建一个
Matthias Kurzke | Daniel Spirn | Roger Moser | Christof Melcher | R. Moser | C. Melcher | D. Spirn | Matthias Kurzke | Matthias W. Kurzke | Daniel Spirn
[1] Robert L. Jerrard,et al. Ginzburg-landau vortices: weak stability and schrödinger equation dynamics , 1999 .
[2] Jean-Michel Coron,et al. Harmonic maps with defects , 1986 .
[3] E Weinan,et al. Dynamics of vortices in Ginzburg-Landau theories with applications to superconductivity , 1994 .
[4] N. Tose,et al. Elliptic boundary value problems in the space of distributions , 1997 .
[5] A. Eberle,et al. Quantitative approximations of evolving probability measures and sequential Markov chain Monte Carlo methods , 2010, Probability Theory and Related Fields.
[6] Tobias Finis,et al. The spectral side of Arthur's trace formula , 2009, Proceedings of the National Academy of Sciences.
[7] Evelyne Miot,et al. Dynamics of vortices for the complex Ginzburg–Landau equation , 2008, 0810.4782.
[8] S. Albeverio,et al. Structure of derivations on various algebras of measurable operators for type I von Neumann algebras , 2008, 0808.0149.
[9] Dorsey. Vortex motion and the Hall effect in type-II superconductors: A time-dependent Ginzburg-Landau theory approach. , 1992, Physical review. B, Condensed matter.
[10] Jalal Shatah,et al. Soliton dynamics in planar ferromagnets and anti-ferromagnets. , 2003, Journal of Zhejiang University. Science.
[11] S. Serfaty. Vortex collisions and energy-dissipation rates in the Ginzburg–Landau heat flow. Part I: Study of the perturbed Ginzburg–Landau equation , 2007 .
[12] S. Albeverio,et al. On the classification of complex Leibniz superalgebras with characteristic sequence $(n-1, 1 | m_1, ..., m_k)$ and nilindex $n+m$ , 2008, 0806.4743.
[13] Fanghua Lin,et al. Some Dynamical Properties of Ginzburg-Landau Vortices , 1996 .
[14] Rolf Krause,et al. A Recursive Trust-Region Method for Non-Convex Constrained Minimization , 2009 .
[15] Erez Lapid,et al. SPECTRAL ASYMPTOTICS FOR ARITHMETIC QUOTIENTS OF SL(n,R)/SO(n) , 2007, 0711.2925.
[16] Helmut Harbrecht,et al. A finite element method for elliptic problems with stochastic input data , 2010 .
[17] Halil Mete Soner,et al. Dynamics of Ginzburg‐Landau Vortices , 1998 .
[18] J. Xin,et al. On the Incompressible Fluid Limit and the Vortex Motion Law of the Nonlinear Schrödinger Equation , 1999 .
[19] Robert L. Jerrard,et al. On the NLS dynamics for infinite energy vortex configurations on the plane , 2008 .
[20] Michael Griebel,et al. A multigrid method for constrained optimal control problems , 2011, J. Comput. Appl. Math..
[21] F. Lin. A remark on the previous paper “Some dynamical properties of Ginzburg-Landau vortices” , 1996 .
[22] S. Albeverio,et al. Complete description of derivations on -compact operators for type I von Neumann algebras , 2008, 0807.4316.
[23] Ling Fang-hua,et al. Soliton dynamics in planar ferromagnets and anti-ferromagnets , 2003 .
[24] Robert L. Jerrard,et al. Vortex dynamics for the Ginzburg-Landau-Schrodinger equation , 1997 .
[25] Fanghua Lin,et al. Static Theory for Planar Ferromagnets and Antiferromagnets , 2001 .
[26] Michael Griebel,et al. Optimized general sparse grid approximation spaces for operator equations , 2009, Math. Comput..
[27] Sören Bartels,et al. Semi-Implicit Approximation of Wave Maps into Smooth or Convex Surfaces , 2009, SIAM J. Numer. Anal..
[28] F. Béthuel,et al. Collisions and phase-vortex interactions in dissipative Ginzburg-Landau dynamics , 2005 .
[29] F. Béthuel,et al. Quantization and Motion Law for Ginzburg–Landau Vortices , 2007 .
[30] H. Weber. On the short time asymptotic of the stochastic Allen–Cahn equation , 2009, 0908.0580.
[31] Sylvia Serfaty,et al. A product-estimate for Ginzburg–Landau and corollaries , 2004 .
[32] John C. Neu,et al. Vortices in complex scalar fields , 1990 .
[33] Michael Griebel,et al. The BGY3dM model for the approximation of solvent densities. , 2008, The Journal of chemical physics.
[34] Sylvia Serfaty,et al. LOCAL MINIMIZERS FOR THE GINZBURG–LANDAU ENERGY NEAR CRITICAL MAGNETIC FIELD: PART II , 1999 .
[35] H. Brezis,et al. Ginzburg-Landau Vortices , 1994 .
[36] S. Serfaty. Vortex collisions and energy-dissipation rates in the Ginzburg-Landau heat flow Part II: The dynamics , 2007 .
[37] Daniel Spirn,et al. Refined Jacobian Estimates and Gross–Pitaevsky Vortex Dynamics , 2008 .
[38] S. Serfaty,et al. Gamma‐convergence of gradient flows with applications to Ginzburg‐Landau , 2004 .
[39] P. Felmer,et al. Local minimizers for the Ginzburg-Landau energy , 1997 .