Dynamics for ginzburg-landau vortices under a mixed flow

We consider a complex Ginzburg-Landau equation that contains a Schrodinger term and a damping term that is proportional to the time derivative. Given well-prepared initial conditions that correspond to quantized vortices, we establish the vortex motion law until collision time.

[1]  Robert L. Jerrard,et al.  Ginzburg-landau vortices: weak stability and schrödinger equation dynamics , 1999 .

[2]  Jean-Michel Coron,et al.  Harmonic maps with defects , 1986 .

[3]  E Weinan,et al.  Dynamics of vortices in Ginzburg-Landau theories with applications to superconductivity , 1994 .

[4]  N. Tose,et al.  Elliptic boundary value problems in the space of distributions , 1997 .

[5]  A. Eberle,et al.  Quantitative approximations of evolving probability measures and sequential Markov chain Monte Carlo methods , 2010, Probability Theory and Related Fields.

[6]  Tobias Finis,et al.  The spectral side of Arthur's trace formula , 2009, Proceedings of the National Academy of Sciences.

[7]  Evelyne Miot,et al.  Dynamics of vortices for the complex Ginzburg–Landau equation , 2008, 0810.4782.

[8]  S. Albeverio,et al.  Structure of derivations on various algebras of measurable operators for type I von Neumann algebras , 2008, 0808.0149.

[9]  Dorsey Vortex motion and the Hall effect in type-II superconductors: A time-dependent Ginzburg-Landau theory approach. , 1992, Physical review. B, Condensed matter.

[10]  Jalal Shatah,et al.  Soliton dynamics in planar ferromagnets and anti-ferromagnets. , 2003, Journal of Zhejiang University. Science.

[11]  S. Serfaty Vortex collisions and energy-dissipation rates in the Ginzburg–Landau heat flow. Part I: Study of the perturbed Ginzburg–Landau equation , 2007 .

[12]  S. Albeverio,et al.  On the classification of complex Leibniz superalgebras with characteristic sequence $(n-1, 1 | m_1, ..., m_k)$ and nilindex $n+m$ , 2008, 0806.4743.

[13]  Fanghua Lin,et al.  Some Dynamical Properties of Ginzburg-Landau Vortices , 1996 .

[14]  Rolf Krause,et al.  A Recursive Trust-Region Method for Non-Convex Constrained Minimization , 2009 .

[15]  Erez Lapid,et al.  SPECTRAL ASYMPTOTICS FOR ARITHMETIC QUOTIENTS OF SL(n,R)/SO(n) , 2007, 0711.2925.

[16]  Helmut Harbrecht,et al.  A finite element method for elliptic problems with stochastic input data , 2010 .

[17]  Halil Mete Soner,et al.  Dynamics of Ginzburg‐Landau Vortices , 1998 .

[18]  J. Xin,et al.  On the Incompressible Fluid Limit and the Vortex Motion Law of the Nonlinear Schrödinger Equation , 1999 .

[19]  Robert L. Jerrard,et al.  On the NLS dynamics for infinite energy vortex configurations on the plane , 2008 .

[20]  Michael Griebel,et al.  A multigrid method for constrained optimal control problems , 2011, J. Comput. Appl. Math..

[21]  F. Lin A remark on the previous paper “Some dynamical properties of Ginzburg-Landau vortices” , 1996 .

[22]  S. Albeverio,et al.  Complete description of derivations on -compact operators for type I von Neumann algebras , 2008, 0807.4316.

[23]  Ling Fang-hua,et al.  Soliton dynamics in planar ferromagnets and anti-ferromagnets , 2003 .

[24]  Robert L. Jerrard,et al.  Vortex dynamics for the Ginzburg-Landau-Schrodinger equation , 1997 .

[25]  Fanghua Lin,et al.  Static Theory for Planar Ferromagnets and Antiferromagnets , 2001 .

[26]  Michael Griebel,et al.  Optimized general sparse grid approximation spaces for operator equations , 2009, Math. Comput..

[27]  Sören Bartels,et al.  Semi-Implicit Approximation of Wave Maps into Smooth or Convex Surfaces , 2009, SIAM J. Numer. Anal..

[28]  F. Béthuel,et al.  Collisions and phase-vortex interactions in dissipative Ginzburg-Landau dynamics , 2005 .

[29]  F. Béthuel,et al.  Quantization and Motion Law for Ginzburg–Landau Vortices , 2007 .

[30]  H. Weber On the short time asymptotic of the stochastic Allen–Cahn equation , 2009, 0908.0580.

[31]  Sylvia Serfaty,et al.  A product-estimate for Ginzburg–Landau and corollaries , 2004 .

[32]  John C. Neu,et al.  Vortices in complex scalar fields , 1990 .

[33]  Michael Griebel,et al.  The BGY3dM model for the approximation of solvent densities. , 2008, The Journal of chemical physics.

[34]  Sylvia Serfaty,et al.  LOCAL MINIMIZERS FOR THE GINZBURG–LANDAU ENERGY NEAR CRITICAL MAGNETIC FIELD: PART II , 1999 .

[35]  H. Brezis,et al.  Ginzburg-Landau Vortices , 1994 .

[36]  S. Serfaty Vortex collisions and energy-dissipation rates in the Ginzburg-Landau heat flow Part II: The dynamics , 2007 .

[37]  Daniel Spirn,et al.  Refined Jacobian Estimates and Gross–Pitaevsky Vortex Dynamics , 2008 .

[38]  S. Serfaty,et al.  Gamma‐convergence of gradient flows with applications to Ginzburg‐Landau , 2004 .

[39]  P. Felmer,et al.  Local minimizers for the Ginzburg-Landau energy , 1997 .