Fourier series weight in quantum machine learning

In this work, we aim to confirm the impact of the Fourier series on the quantum machine learning model. We will propose models, tests, and demonstrations to achieve this objective. We designed a quantum machine learning leveraged on the Hamiltonian encoding. With a subtle change, we performed the trigonometric interpolation, binary and multiclass classifier, and a quantum signal processing application. We also proposed a block diagram of determining approximately the Fourier coefficient based on quantum machine learning. We performed and tested all the proposed models using the Pennylane framework.

[1]  T. L. Silva,et al.  Fourier-based quantum signal processing , 2022, 2206.02826.

[2]  Parfait Atchade-Adelomou Quantum Algorithms for solving Hard Constrained Optimisation Problems , 2022, ArXiv.

[3]  Parfait Atchade-Adelomou,et al.  Quantum-enhanced filter: QFilter , 2021, Soft Computing.

[4]  Elisabet Golobardes Ribé,et al.  Quantum case-based reasoning (qCBR) , 2021, Artificial Intelligence Review.

[5]  Patrick J. Coles,et al.  Connecting ansatz expressibility to gradient magnitudes and barren plateaus , 2021, PRX Quantum.

[6]  S. Benjamin,et al.  Tailoring Term Truncations for Electronic Structure Calculations Using a Linear Combination of Unitaries , 2020, Quantum.

[7]  Parfait Atchade-Adelomou,et al.  EVA: a quantum Exponential Value Approximation algorithm , 2021, 2106.08731.

[8]  E. Feireisl,et al.  Navier–Stokes–Fourier system with Dirichlet boundary conditions , 2021, 2106.05315.

[9]  Lixin Fan,et al.  Fast black-box quantum state preparation based on linear combination of unitaries , 2021, Quantum Information Processing.

[10]  Maria Schuld,et al.  Effect of data encoding on the expressive power of variational quantum-machine-learning models , 2020, Physical Review A.

[11]  Atchade Parfait Adelomou,et al.  Formulation of the Social Workers’ Problem in Quadratic Unconstrained Binary Optimization Form and Solve It on a Quantum Computer , 2020, Journal of Computer and Communications.

[12]  Ievgeniia Oshurko Quantum Machine Learning , 2020, Quantum Computing.

[13]  S. Lloyd,et al.  Quantum embeddings for machine learning , 2020, 2001.03622.

[14]  Jos'e I. Latorre,et al.  Data re-uploading for a universal quantum classifier , 2019, Quantum.

[15]  Tomoki Tanaka,et al.  Analysis and synthesis of feature map for kernel-based quantum classifier , 2019, Quantum Mach. Intell..

[16]  Dirk Oliver Theis,et al.  Input Redundancy for Parameterized Quantum Circuits , 2019, Frontiers in Physics.

[17]  Simone Severini,et al.  Universal discriminative quantum neural networks , 2018, Quantum Machine Intelligence.

[18]  Tongliang Liu,et al.  Expressive power of parametrized quantum circuits , 2020 .

[19]  Xavier Vilasís-Cardona,et al.  Using the Variational-Quantum-Eigensolver (VQE) to Create an Intelligent Social Workers Schedule Problem Solver , 2020, HAIS.

[20]  Peter D. Johnson,et al.  Expressibility and Entangling Capability of Parameterized Quantum Circuits for Hybrid Quantum‐Classical Algorithms , 2019, Advanced Quantum Technologies.

[21]  J. Biamonte Universal variational quantum computation , 2019, Physical Review A.

[22]  G. Guerreschi Repeat-until-success circuits with fixed-point oblivious amplitude amplification , 2018, Physical Review A.

[23]  Seth Lloyd,et al.  Continuous-variable quantum neural networks , 2018, Physical Review Research.

[24]  Maria Schuld,et al.  Quantum Machine Learning in Feature Hilbert Spaces. , 2018, Physical review letters.

[25]  Ryan Babbush,et al.  Barren plateaus in quantum neural network training landscapes , 2018, Nature Communications.

[26]  Leonardo Novo,et al.  Improved Hamiltonian simulation via a truncated Taylor series and corrections , 2016, Quantum Inf. Comput..

[27]  Hans-J. Briegel,et al.  Quantum-enhanced machine learning , 2016, Physical review letters.

[28]  F. Petruccione,et al.  An introduction to quantum machine learning , 2014, Contemporary Physics.

[29]  Peter Wittek,et al.  A second-order distributed Trotter-Suzuki solver with a hybrid CPU-GPU kernel , 2012, Comput. Phys. Commun..

[30]  Andrew M. Childs,et al.  Simulating Sparse Hamiltonians with Star Decompositions , 2010, TQC.

[31]  N. Hatano,et al.  Finding Exponential Product Formulas of Higher Orders , 2005, math-ph/0506007.

[32]  Julia Kempe,et al.  The Complexity of the Local Hamiltonian Problem , 2004, FSTTCS.

[33]  Andris Ambainis,et al.  Quantum walk algorithm for element distinctness , 2003, 45th Annual IEEE Symposium on Foundations of Computer Science.

[34]  Yonina C. Eldar Quantum signal processing , 2002, IEEE Signal Process. Mag..

[35]  Hans De Raedt,et al.  Applications of the generalized Trotter formula , 1983 .

[36]  H. Landau Sampling, data transmission, and the Nyquist rate , 1967 .

[37]  T. Sakurai An Extension of Parseval Theorem , 1938 .