Video Quality Prediction Under Time-Varying Loads

We are on the cusp of an era where we can responsively and adaptively predict future network performance from network device statistics in the Cloud. To make this happen, regression-based models have been applied to learn mappings between the kernel metrics of a machine in a service cluster and service quality metrics on a client machine. The path ahead requires the ability to adaptively parametrize learning algorithms for arbitrary problems and to increase computation speed. We consider methods to adaptively parametrize regularization penalties, coupled with methods for compensating for the effects of the time-varying loads present in the system, namely load-adjusted learning. The time-varying nature of networked systems gives rise to the need for faster learning models to manage them; paradoxically, models that have been applied have not explicitly accounted for their time-varying nature. Consequently previous studies have reported that the learning problems were ill-conditioned -the practical, undesirable consequence of this is variability in prediction quality. Subset selection has been proposed as a solution. We highlight the short-comings of subset selection. We demonstrate that load-adjusted learning, using a suitable adaptive regularization function, outperforms current subset selection approaches by 10% and reduces computation.

[1]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[2]  S. Chandramathi,et al.  Intelligent Video QoE Prediction Model for Errorprone Networks , 2015 .

[3]  Ruairí de Fréin,et al.  Source Separation Approach to Video Quality Prediction in Computer Networks , 2016, IEEE Commun. Lett..

[4]  Raouf Boutaba,et al.  A comprehensive survey on machine learning for networking: evolution, applications and research opportunities , 2018, Journal of Internet Services and Applications.

[5]  Sidath Handurukande,et al.  Magneto approach to QoS monitoring , 2011, 12th IFIP/IEEE International Symposium on Integrated Network Management (IM 2011) and Workshops.

[6]  Rolf Stadler,et al.  Predicting service metrics for cluster-based services using real-time analytics , 2015, 2015 11th International Conference on Network and Service Management (CNSM).

[7]  Ruairi de Frein,et al.  Source Separation Approach to Video Quality Prediction in Computer Networks , 2016, IEEE Communications Letters.

[8]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[9]  Ruairí de Fréin,et al.  Effect of system load on video service metrics , 2015, 2015 26th Irish Signals and Systems Conference (ISSC).

[10]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .