Virtual Distillation for Quantum Error Mitigation

Contemporary quantum computers have relatively high levels of noise, making it difficult to use them to perform useful calculations, even with a large number of qubits. Quantum error correction is expected to eventually enable fault-tolerant quantum computation at large scales, but until then it will be necessary to use alternative strategies to mitigate the impact of errors. We propose a near-term friendly strategy to mitigate errors by entangling and measuring $M$ copies of a noisy state $\rho$. This enables us to estimate expectation values with respect to a state with dramatically reduced error, $\rho^M /\ tr(\rho^M)$, without explicitly preparing it, hence the name "virtual distillation." As $M$ increases, this state approaches the closest pure state to $\rho$, exponentially quickly. We analyze the effectiveness of virtual distillation and find that it is governed in many regimes by the behaviour of this pure state (corresponding to the dominant eigenvector of $\rho$). We numerically demonstrate that virtual distillation is capable of suppressing errors by multiple orders of magnitude and explain how this effect is enhanced as the system size grows. Finally, we show that this technique can improve the convergence of randomized quantum algorithms, even in the absence of device noise.

[1]  J. Tropp,et al.  Quantum simulation via randomized product formulas: Low gate complexity with accuracy guarantees , 2020 .

[2]  Simon C. Benjamin,et al.  Learning-Based Quantum Error Mitigation , 2021, PRX Quantum.

[3]  Alán Aspuru-Guzik,et al.  Quantum Simulation of Electronic Structure with Linear Depth and Connectivity. , 2017, Physical review letters.

[4]  Fei Yan,et al.  A quantum engineer's guide to superconducting qubits , 2019, Applied Physics Reviews.

[5]  D. Bacon,et al.  Efficient quantum circuits for Schur and Clebsch-Gordan transforms. , 2004, Physical review letters.

[6]  Tyler Y Takeshita,et al.  Hartree-Fock on a superconducting qubit quantum computer , 2020, Science.

[7]  Simon Benjamin,et al.  Error-Mitigated Digital Quantum Simulation. , 2018, Physical review letters.

[8]  Christopher T. Chubb,et al.  Hand-waving and interpretive dance: an introductory course on tensor networks , 2016, 1603.03039.

[9]  Paweł Horodecki,et al.  Direct estimations of linear and nonlinear functionals of a quantum state. , 2002, Physical review letters.

[10]  Jordan S. Cotler,et al.  Quantum Virtual Cooling , 2018, Physical Review X.

[11]  Ying Li,et al.  Mitigating algorithmic errors in a Hamiltonian simulation , 2018, Physical Review A.

[12]  T. O'Brien,et al.  Low-cost error mitigation by symmetry verification , 2018, Physical Review A.

[13]  Alexei Y. Kitaev,et al.  Quantum measurements and the Abelian Stabilizer Problem , 1995, Electron. Colloquium Comput. Complex..

[14]  Austin G. Fowler,et al.  Threshold error rates for the toric and planar codes , 2010, Quantum Inf. Comput..

[15]  Jonathan Carter,et al.  Computation of Molecular Spectra on a Quantum Processor with an Error-Resilient Algorithm , 2018 .

[16]  Asher Peres Error Symmetrization in Quantum Computers , 1996 .

[17]  Austin G. Fowler,et al.  Surface code quantum computing by lattice surgery , 2011, 1111.4022.

[18]  Daniel Litinski,et al.  A Game of Surface Codes: Large-Scale Quantum Computing with Lattice Surgery , 2018, Quantum.

[19]  Abolfazl Bayat,et al.  Entanglement entropy scaling in solid-state spin arrays via capacitance measurements , 2016, 1608.03970.

[20]  Jay M. Gambetta,et al.  Mitigating measurement errors in multiqubit experiments , 2020, 2006.14044.

[21]  Pedro Chamorro-Posada,et al.  swap test and Hong-Ou-Mandel effect are equivalent , 2013, 1303.6814.

[22]  Patrick J. Coles,et al.  Entanglement spectroscopy with a depth-two quantum circuit , 2018, Journal of Physics A: Mathematical and Theoretical.

[23]  Patrick J. Coles,et al.  Error mitigation with Clifford quantum-circuit data , 2020, Quantum.

[24]  B'alint Koczor Exponential Error Suppression for Near-Term Quantum Devices , 2021, Physical Review X.

[25]  Dorit Aharonov,et al.  Fault-tolerant quantum computation with constant error , 1997, STOC '97.

[26]  Nathan Wiebe,et al.  Efficient and noise resilient measurements for quantum chemistry on near-term quantum computers , 2019, npj Quantum Information.

[27]  Kristan Temme,et al.  Error Mitigation for Short-Depth Quantum Circuits. , 2016, Physical review letters.

[28]  Kristan Temme,et al.  Error mitigation extends the computational reach of a noisy quantum processor , 2019, Nature.

[29]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[30]  J. McClean,et al.  Error Mitigation via Verified Phase Estimation , 2020, 2010.02538.

[31]  David Deutsch,et al.  Stabilization of Quantum Computations by Symmetrization , 1997, SIAM J. Comput..

[32]  M. Rispoli,et al.  Measuring entanglement entropy in a quantum many-body system , 2015, Nature.

[33]  Yuan Su,et al.  Faster quantum simulation by randomization , 2018, Quantum.

[34]  P. Horodecki,et al.  Method for direct detection of quantum entanglement. , 2001, Physical review letters.

[35]  Earl Campbell,et al.  Compilation by stochastic Hamiltonian sparsification , 2019 .

[36]  E. Knill Quantum computing with realistically noisy devices , 2005, Nature.

[37]  Jordan S. Cotler,et al.  Quantum Overlapping Tomography. , 2019, Physical review letters.

[38]  A. Kitaev,et al.  Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.

[39]  S. Benjamin,et al.  Practical Quantum Error Mitigation for Near-Future Applications , 2017, Physical Review X.

[40]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[41]  Roman Orus,et al.  A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States , 2013, 1306.2164.

[42]  V. Krivnov,et al.  Quasi-one-dimensional anisotropic Heisenberg model in a transverse magnetic field , 2004 .

[43]  J. Carter,et al.  Hybrid Quantum-Classical Hierarchy for Mitigation of Decoherence and Determination of Excited States , 2016, 1603.05681.

[44]  R. Fisher The Advanced Theory of Statistics , 1943, Nature.

[45]  Ryan Babbush,et al.  Decoding quantum errors with subspace expansions , 2019, Nature Communications.

[46]  Masoud Mohseni,et al.  Observation of separated dynamics of charge and spin in the Fermi-Hubbard model , 2020, 2010.07965.

[47]  Ryan Babbush,et al.  Nearly Optimal Measurement Scheduling for Partial Tomography of Quantum States , 2019, Physical Review X.

[48]  Bryan O'Gorman,et al.  Generalized swap networks for near-term quantum computing , 2019, ArXiv.

[49]  J. Biamonte,et al.  Tensor Networks in a Nutshell , 2017, 1708.00006.

[50]  M. A. Rol,et al.  Experimental error mitigation via symmetry verification in a variational quantum eigensolver , 2019, Physical Review A.

[51]  D. Deutsch,et al.  The stabilisation of quantum computations , 1994, Proceedings Workshop on Physics and Computation. PhysComp '94.

[53]  J. Cirac,et al.  Optimal Purification of Single Qubits , 1998, quant-ph/9812075.

[54]  Jeongwan Haah,et al.  Codes and Protocols for Distilling T, controlled-S, and Toffoli Gates , 2017, Quantum.

[55]  Matthias Troyer,et al.  Entanglement spectroscopy on a quantum computer , 2017, 1707.07658.

[56]  Matthew B Hastings,et al.  Measuring Renyi entanglement entropy in quantum Monte Carlo simulations. , 2010, Physical review letters.

[57]  Measuring polynomial functions of states , 2004, quant-ph/0401067.

[58]  Minh C. Tran,et al.  Faster Digital Quantum Simulation by Symmetry Protection , 2020, PRX Quantum.

[59]  Michal Oszmaniec,et al.  Mitigation of readout noise in near-term quantum devices by classical post-processing based on detector tomography , 2019, Quantum.

[60]  Tosio Kato Perturbation theory for linear operators , 1966 .

[61]  E. Campbell Random Compiler for Fast Hamiltonian Simulation. , 2018, Physical review letters.

[62]  Travis S. Humble,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.