Eigenvectors of tensors and algorithms for Waring decomposition
暂无分享,去创建一个
[1] F. Enriquès,et al. Lezioni sulla teoria geometrica delle equazioni e delle funzioni algebriche , 1919 .
[2] H. Hornich. Lezioni sulla teoria geometrica delle equazioni e delle funzioni algebriche , 1934 .
[3] T. Willmore. Algebraic Geometry , 1973, Nature.
[4] C. Okonek,et al. Vector bundles on complex projective spaces , 1980 .
[5] Joe Harris,et al. Representation Theory: A First Course , 1991 .
[6] C. D. Boor,et al. Polynomial interpolation in several variables , 1994 .
[7] Pierre Comon,et al. Decomposition of quantics in sums of powers of linear forms , 1996, Signal Process..
[8] K. Ranestad,et al. Varieties of sums of powers , 1998, math/9801110.
[9] Tomas Sauer,et al. Polynomial interpolation in several variables , 2000, Adv. Comput. Math..
[10] A. Iarrobino,et al. Power Sums, Gorenstein Algebras, and Determinantal Loci , 2000 .
[11] L. Chiantini,et al. Weakly defective varieties , 2001 .
[12] M. Mella. Singularities of linear systems and the Waring problem , 2004, math/0406288.
[13] E. Ballico. On the weak non-defectivity of veronese embeddings of projective spaces , 2005 .
[14] Lek-Heng Lim,et al. Singular values and eigenvalues of tensors: a variational approach , 2005, 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005..
[15] Liqun Qi,et al. Eigenvalues of a real supersymmetric tensor , 2005, J. Symb. Comput..
[16] L. Qi,et al. The degree of the E-characteristic polynomial of an even order tensor , 2007 .
[17] M. Mella. Base loci of linear systems and the Waring problem , 2007, 0710.5876.
[18] Vin de Silva,et al. Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.
[19] G. Ottaviani. An Invariant Regarding Waring’s Problem for Cubic Polynomials , 2007, Nagoya Mathematical Journal.
[20] Pierre Comon,et al. Symmetric tensor decomposition , 2009, 2009 17th European Signal Processing Conference.
[21] Weronika Buczy'nska,et al. Secant varieties to high degree Veronese reembeddings, catalecticant matrices and smoothable Gorenstein schemes , 2010, 1012.3563.
[22] J. Landsberg,et al. Equations for secant varieties to Veronese varieties , 2010, 1006.0180.
[23] G. Ottaviani,et al. Matrices with eigenvectors in a given subspace , 2010, 1012.1016.
[24] Alessandra Bernardi,et al. Computing symmetric rank for symmetric tensors , 2009, J. Symb. Comput..
[25] Tamara G. Kolda,et al. Efficiently Computing Tensor Eigenvalues on a GPU , 2011, 2011 IEEE International Symposium on Parallel and Distributed Processing Workshops and Phd Forum.
[26] J. Landsberg,et al. Equations for secant varieties of Veronese and other varieties , 2011, 1111.4567.
[27] Gonzalo Comas,et al. On the Rank of a Binary Form , 2011, Found. Comput. Math..
[28] Tamara G. Kolda,et al. Shifted Power Method for Computing Tensor Eigenpairs , 2010, SIAM J. Matrix Anal. Appl..
[29] Luke Oeding,et al. Secant varieties of ℙ2 × ℙn embedded by 𝒪(1, 2) , 2010, J. Lond. Math. Soc..
[30] E. Ballico,et al. Decomposition of homogeneous polynomials with low rank , 2010, 1003.5157.
[31] B. Sturmfels,et al. The number of eigenvalues of a tensor , 2010, 1004.4953.
[32] Christopher J. Hillar,et al. Most Tensor Problems Are NP-Hard , 2009, JACM.