Eigenvectors of tensors and algorithms for Waring decomposition

[1]  F. Enriquès,et al.  Lezioni sulla teoria geometrica delle equazioni e delle funzioni algebriche , 1919 .

[2]  H. Hornich Lezioni sulla teoria geometrica delle equazioni e delle funzioni algebriche , 1934 .

[3]  T. Willmore Algebraic Geometry , 1973, Nature.

[4]  C. Okonek,et al.  Vector bundles on complex projective spaces , 1980 .

[5]  Joe Harris,et al.  Representation Theory: A First Course , 1991 .

[6]  C. D. Boor,et al.  Polynomial interpolation in several variables , 1994 .

[7]  Pierre Comon,et al.  Decomposition of quantics in sums of powers of linear forms , 1996, Signal Process..

[8]  K. Ranestad,et al.  Varieties of sums of powers , 1998, math/9801110.

[9]  Tomas Sauer,et al.  Polynomial interpolation in several variables , 2000, Adv. Comput. Math..

[10]  A. Iarrobino,et al.  Power Sums, Gorenstein Algebras, and Determinantal Loci , 2000 .

[11]  L. Chiantini,et al.  Weakly defective varieties , 2001 .

[12]  M. Mella Singularities of linear systems and the Waring problem , 2004, math/0406288.

[13]  E. Ballico On the weak non-defectivity of veronese embeddings of projective spaces , 2005 .

[14]  Lek-Heng Lim,et al.  Singular values and eigenvalues of tensors: a variational approach , 2005, 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005..

[15]  Liqun Qi,et al.  Eigenvalues of a real supersymmetric tensor , 2005, J. Symb. Comput..

[16]  L. Qi,et al.  The degree of the E-characteristic polynomial of an even order tensor , 2007 .

[17]  M. Mella Base loci of linear systems and the Waring problem , 2007, 0710.5876.

[18]  Vin de Silva,et al.  Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.

[19]  G. Ottaviani An Invariant Regarding Waring’s Problem for Cubic Polynomials , 2007, Nagoya Mathematical Journal.

[20]  Pierre Comon,et al.  Symmetric tensor decomposition , 2009, 2009 17th European Signal Processing Conference.

[21]  Weronika Buczy'nska,et al.  Secant varieties to high degree Veronese reembeddings, catalecticant matrices and smoothable Gorenstein schemes , 2010, 1012.3563.

[22]  J. Landsberg,et al.  Equations for secant varieties to Veronese varieties , 2010, 1006.0180.

[23]  G. Ottaviani,et al.  Matrices with eigenvectors in a given subspace , 2010, 1012.1016.

[24]  Alessandra Bernardi,et al.  Computing symmetric rank for symmetric tensors , 2009, J. Symb. Comput..

[25]  Tamara G. Kolda,et al.  Efficiently Computing Tensor Eigenvalues on a GPU , 2011, 2011 IEEE International Symposium on Parallel and Distributed Processing Workshops and Phd Forum.

[26]  J. Landsberg,et al.  Equations for secant varieties of Veronese and other varieties , 2011, 1111.4567.

[27]  Gonzalo Comas,et al.  On the Rank of a Binary Form , 2011, Found. Comput. Math..

[28]  Tamara G. Kolda,et al.  Shifted Power Method for Computing Tensor Eigenpairs , 2010, SIAM J. Matrix Anal. Appl..

[29]  Luke Oeding,et al.  Secant varieties of ℙ2 × ℙn embedded by 𝒪(1, 2) , 2010, J. Lond. Math. Soc..

[30]  E. Ballico,et al.  Decomposition of homogeneous polynomials with low rank , 2010, 1003.5157.

[31]  B. Sturmfels,et al.  The number of eigenvalues of a tensor , 2010, 1004.4953.

[32]  Christopher J. Hillar,et al.  Most Tensor Problems Are NP-Hard , 2009, JACM.