Single crystal diamond detector measurements of deuterium-deuterium and deuterium-tritium neutrons in Joint European Torus fusion plasmas.

First simultaneous measurements of deuterium-deuterium (DD) and deuterium-tritium neutrons from deuterium plasmas using a Single crystal Diamond Detector are presented in this paper. The measurements were performed at JET with a dedicated electronic chain that combined high count rate capabilities and high energy resolution. The deposited energy spectrum from DD neutrons was successfully reproduced by means of Monte Carlo calculations of the detector response function and simulations of neutron emission from the plasma, including background contributions. The reported results are of relevance for the development of compact neutron detectors with spectroscopy capabilities for installation in camera systems of present and future high power fusion experiments.

[1]  A. Murari,et al.  The TOFOR neutron spectrometer and its first use at JET , 2006 .

[2]  G. Lehner,et al.  Reaktionsneutronen als Hilfsmittel der Plasmadiagnostik , 1967 .

[3]  A. Murari,et al.  Development and characterization of the proton recoil detector for the MPRu neutron spectrometer , 2006 .

[4]  H. Klein,et al.  Neutron spectrometry in mixed fields: NE213/BC501A liquid scintillation spectrometers. , 2003, Radiation protection dosimetry.

[5]  A. Murari,et al.  New MPRu instrument for neutron emission spectroscopy at JET , 2006 .

[6]  M. Tardocchi,et al.  Triton burn-up neutron emission in JET low current plasmas , 2008 .

[7]  A. Murari,et al.  Tomographic analysis of neutron and gamma pulse shape distributions from liquid scintillation detectors at Joint European Torus. , 2014, The Review of scientific instruments.

[8]  Giuseppe Gorini,et al.  Diagnosis of physical parameters of fast particles in high power fusion plasmas with high resolution neutron and gamma-ray spectroscopy , 2013 .

[9]  Mario Pillon,et al.  14 MeV neutron spectra measurements with 4% energy resolution using a type IIa diamond detector , 1995 .

[10]  V. Bobkov,et al.  Gamma-ray spectroscopy measurements of confined fast ions on ASDEX Upgrade , 2012 .

[11]  M. Nocente,et al.  Simulation of neutron emission spectra from neutral beam-heated plasmas in the EAST tokamak , 2013 .

[12]  Giuseppe Gorini,et al.  High-resolution gamma ray spectroscopy measurements of the fast ion energy distribution in JET 4He plasmas , 2012 .

[13]  V. Kiptily,et al.  Neutron emission from beryllium reactions in JET deuterium plasmas with 3He minority , 2010 .

[14]  G. Pucella,et al.  Time dependent 14 MeV neutrons measurement using a polycrystalline chemical vapor deposited diamond detector at the JET tokamak , 2005 .

[15]  M Tardocchi,et al.  Spectral broadening of characteristic γ-ray emission peaks from 12C(3He,pγ)14N reactions in fusion plasmas. , 2011, Physical review letters.

[16]  J. Frenje,et al.  Measurement and interpretation of the spectrum of the triton burnup neutron emission from deuterium tokamak plasmas , 2000 .

[17]  D. Plummer,et al.  Fusion yield measurements on JET and their calibration , 2014 .

[18]  J. Frenje,et al.  Neutron emission spectroscopy at JET—Results from the magnetic proton recoil spectrometer (invited) , 2001 .

[19]  Valentin T. Jordanov,et al.  Digital techniques for real-time pulse shaping in radiation measurements , 1994 .

[20]  M. Tardocchi,et al.  Response of a single-crystal diamond detector to fast neutrons , 2013 .

[21]  M. G. Johnson,et al.  The thin-foil magnetic proton recoil neutron spectrometer MPRu at JET , 2009 .

[22]  Anders Hjalmarsson,et al.  The 2.5-MeV neutron time-of-flight spectrometer TOFOR for experiments at JET , 2008 .

[23]  C. Verona,et al.  Single-crystal diamond detector for time-resolved measurements of a pulsed fast-neutron beam , 2010 .

[24]  A. Zimbal,et al.  Results for the response function determination of the Compact Neutron Spectrometer , 2012, 1201.6250.

[25]  W. Cash,et al.  Parameter estimation in astronomy through application of the likelihood ratio. [satellite data analysis techniques , 1979 .

[26]  Kuppusamy Thayalan,et al.  Radiation Detection and Measurements , 2014 .

[27]  G. Prestopino,et al.  Fission diamond detector tests at the ISIS spallation neutron source , 2011 .

[28]  M. A. Vincenti,et al.  Development of single crystal diamond neutron detectors and test at JET tokamak , 2008 .

[29]  A. V. Krasilnikov,et al.  TFTR natural diamond detectors based D–T neutron spectrometry system , 1997 .

[30]  V. Kiptily,et al.  Measurements of fast ions and their interactions with MHD activity using neutron emission spectroscopy , 2010 .

[31]  A. Plompen,et al.  Experimental response functions of a single-crystal diamond detector for 5–20.5 MeV neutrons , 2011 .

[32]  Michael Heil,et al.  Pulse shape analysis of liquid scintillators for neutron studies , 2002 .

[33]  J. Frenje,et al.  LETTER TO THE EDITOR: Neutron spectrometry of triton burn-up in plasmas of deuterium , 1998 .

[34]  R. Neu,et al.  The compact neutron spectrometer at ASDEX Upgrade. , 2011, The Review of scientific instruments.

[35]  M. Marinelli,et al.  Fission diamond detectors for fast-neutron ToF spectroscopy , 2011 .

[36]  H. Henriksson Neutron Spectroscopy Studies of Heating Effects in Fusion Plasmas , 2003 .

[37]  J. Contributors,et al.  Neutron spectroscopy measurements of tritium beam transport at JET , 2014 .

[38]  G. Gorini,et al.  Diamond detectors for fast neutron measurements at pulsed spallation sources , 2012 .