Threshold functions and Poisson convergence for systems of equations in random sets

We study threshold functions for the existence of solutions to linear systems of equations in random sets and present a unified framework which includes arithmetic progressions, sum-free sets, $$B_{h}[g]$$Bh[g]-sets and Hilbert cubes. In particular, we show that there exists a threshold function for the property “$$\mathcal {A}$$Acontains a non-trivial solution of $$M\cdot \mathbf{x }=\mathbf 0 $$M·x=0” where $$\mathcal {A}$$A is a random set and each of its elements is chosen independently with the same probability from the interval of integers $$\{1,\dots ,n\}$${1,⋯,n}. Our study contains a formal definition of trivial solutions for any linear system, extending a previous definition by Ruzsa when dealing with a single equation. Furthermore, we study the distribution of the number of non-trivial solutions at the threshold scale. We show that it converges to a Poisson distribution whose parameter depends on the volumes of certain convex polytopes arising from the linear system under study as well as the symmetry inherent in the structures, which we formally define and characterize.

[1]  Michael Elkin An improved construction of progression-free sets , 2010, SODA '10.

[2]  Fan Chung Graham,et al.  Maximum subsets of (0, 1] with no solutions to x+y = kz , 1996, Electron. J. Comb..

[3]  I. G. MacDonald,et al.  The volume of a lattice polyhedron , 1963, Mathematical Proceedings of the Cambridge Philosophical Society.

[4]  Fan Chung Graham,et al.  Integer Sets Containing No Solution to x + y = 3z , 2013, The Mathematics of Paul Erdős I.

[5]  J. Cilleruelo,et al.  Upper and Lower Bounds for Finite Bh[g] Sequences , 2002 .

[6]  Béla Bollobás,et al.  Threshold functions , 1987, Comb..

[7]  Javier Cilleruelo,et al.  On Sets Free of Sumsets with Summands of Prescribed Size , 2015, Comb..

[8]  Julia Wolf,et al.  A Note on Elkin’s Improvement of Behrend’s Construction , 2010 .

[9]  Jean Bourgain,et al.  Roth’s theorem on progressions revisited , 2008 .

[10]  Javier Cilleruelo,et al.  Sidon sets in Nd , 2010, J. Comb. Theory A.

[11]  S. Robins,et al.  Computing the Continuous Discretely: Integer-Point Enumeration in Polyhedra , 2007 .

[12]  K. F. Roth On Certain Sets of Integers , 1953 .

[13]  Van H. Vu,et al.  Concentration of Multivariate Polynomials and Its Applications , 2000, Comb..

[14]  S. Robins,et al.  Computing the Continuous Discretely , 2015 .

[16]  W. T. Gowers,et al.  A new proof of Szemerédi's theorem , 2001 .

[17]  Svante Janson,et al.  Upper tails for counting objects in randomly induced subhypergraphs and rooted random graphs , 2011 .

[18]  Yoshiharu Kohayakawa,et al.  The number of Sidon sets and the maximum size of Sidon sets contained in a sparse random set of integers , 2015, Random Struct. Algorithms.

[19]  J. Cilleruelo,et al.  Generalized sidon sets , 2009, 0909.5024.

[20]  M. Bauer,et al.  Triangulations , 1996, Discret. Math..

[21]  E. Szemerédi On sets of integers containing k elements in arithmetic progression , 1975 .

[22]  F. Behrend On Sets of Integers Which Contain No Three Terms in Arithmetical Progression. , 1946, Proceedings of the National Academy of Sciences of the United States of America.

[23]  W. T. Gowers,et al.  A NEW PROOF OF SZEMER ´ EDI'S THEOREM , 2001 .

[24]  Komei Fukuda,et al.  Exact volume computation for polytopes: a practical study , 1996 .

[25]  J. Cilleruelo,et al.  SIDON SETS IN N , 2008 .

[26]  Andreas Baltz,et al.  The Structure of Maximum Subsets of {1, ..., n} with No Solutions to a+b = kc , 2005, Electron. J. Comb..

[27]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[28]  Andrzej Ruciński,et al.  Rado Partition Theorem for Random Subsets of Integers , 1997 .

[29]  G. Ziegler Lectures on Polytopes , 1994 .

[30]  B. Bollobás The evolution of random graphs , 1984 .

[31]  Kristian Kirsch,et al.  Methods Of Modern Mathematical Physics , 2016 .

[32]  B. Linström,et al.  An inequality for B2-sequences , 1969 .

[33]  David K. Smith Theory of Linear and Integer Programming , 1987 .

[34]  L. Warnke Upper tails for arithmetic progressions in random subsets , 2016, 1612.08559.

[35]  A new proof of Sarkozy's theorem , 2011, 1107.0243.

[36]  I. Ruzsa Difference sets without squares , 1984 .

[37]  D. R. Heath-Brown Integer Sets Containing No Arithmetic Progressions , 1987 .

[38]  Kevin O'Bryant,et al.  Sets of Integers that do not Contain Long Arithmetic Progressions , 2008, Electron. J. Comb..

[39]  P. Erdös,et al.  On a problem of sidon in additive number theory, and on some related problems , 1941 .

[40]  Imre Z. Ruzsa,et al.  Solving a linear equation in a set of integers I , 1993 .

[41]  T. Sanders On Roth's theorem on progressions , 2010, 1011.0104.

[42]  Vojtech Rödl,et al.  Extremal Problems for Affine Cubes of Integers , 1998, Comb. Probab. Comput..

[43]  Svante Janson,et al.  Random Sidon Sequences , 1999 .

[44]  Thomas F. Bloom,et al.  A quantitative improvement for Roth's theorem on arithmetic progressions , 2014, J. Lond. Math. Soc..

[45]  Asaf Shapira,et al.  Behrend-type constructions for sets of linear equations , 2006 .

[46]  J. D. Loera The many aspects of counting lattice points in polytopes , 2005 .

[47]  Budapest,et al.  ON DIFFERENCE SETS OF SEQUENCES OF INTEGERS , 2002 .

[48]  A. Sárközy,et al.  On difference sets of sequences of integers. III , 1978 .

[49]  H. Furstenberg Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions , 1977 .

[50]  P. Erdos,et al.  On the evolution of random graphs , 1984 .