Design of logic gates using spiking neural P systems with homogeneous neurons and astrocytes-like control

[1]  Grzegorz Rozenberg,et al.  Handbook of Formal Languages , 1997, Springer Berlin Heidelberg.

[2]  Wofgang Maas,et al.  Networks of spiking neurons: the third generation of neural network models , 1997 .

[3]  Tullio Pozzan,et al.  Prostaglandins stimulate calcium-dependent glutamate release in astrocytes , 1998, Nature.

[4]  Christopher J. Bishop,et al.  Pulsed Neural Networks , 1998 .

[5]  Gheorghe Paun,et al.  Membrane Computing , 2002, Natural Computing Series.

[6]  Rodica Ceterchi,et al.  Simulating Boolean Circuits with P Systems , 2003, Workshop on Membrane Computing.

[7]  Mihai Ionescu,et al.  Boolean Circuits and a DNA Algorithm in Membrane Computing , 2005, Workshop on Membrane Computing.

[8]  Rudolf Freund,et al.  Extended spiking neural P systems with excitatory and inhibitory astrocytes , 2007 .

[9]  Gheorghe Paun Spiking Neural P Systems with Astrocyte-Like Control , 2007, J. Univers. Comput. Sci..

[10]  Mihai Ionescu,et al.  Several Applications of Spiking Neural P Systems , 2007 .

[11]  G. Perea,et al.  Tripartite synapses: astrocytes process and control synaptic information , 2009, Trends in Neurosciences.

[12]  Oscar H. Ibarra,et al.  Sequential SNP systems based on min/max spike number , 2009, Theor. Comput. Sci..

[13]  Oscar H. Ibarra,et al.  On spiking neural P systems , 2006, Natural Computing.

[14]  Gheorghe Paun,et al.  Spiking Neural P Systems: An Overview , 2009 .

[15]  Oscar H. Ibarra,et al.  Asynchronous spiking neural P systems , 2009, Theor. Comput. Sci..

[16]  Miguel A. Gutiérrez-Naranjo,et al.  First Steps Towards a CPU Made of Spiking Neural P Systems , 2009, Int. J. Comput. Commun. Control.

[17]  Gheorghe Paun,et al.  Spiking Neural P Systems with Anti-Spikes , 2009, Int. J. Comput. Commun. Control.

[18]  Yoshua Bengio,et al.  Why Does Unsupervised Pre-training Help Deep Learning? , 2010, AISTATS.

[19]  Kamala Krithivasan,et al.  Representation of Spiking Neural P Systems with Anti-spikes through Petri Nets , 2010, BIONETICS.

[20]  Gheorghe Paun,et al.  The Oxford Handbook of Membrane Computing , 2010 .

[21]  Simon Haykin,et al.  Neural Networks and Learning Machines , 2010 .

[22]  Xiangxiang Zeng,et al.  Time-Free Spiking Neural P Systems , 2011, Neural Computation.

[23]  Kamala Krithivasan,et al.  On String Languages Generated by Spiking Neural P Systems with Anti-Spikes , 2011, Int. J. Found. Comput. Sci..

[24]  Linqiang Pan,et al.  Spiking Neural P Systems with Astrocytes , 2012, Neural Computation.

[25]  Tao Wang,et al.  Weighted Fuzzy Spiking Neural P Systems , 2013, IEEE Transactions on Fuzzy Systems.

[26]  Linqiang Pan,et al.  Asynchronous spiking neural P systems with local synchronization , 2013, Inf. Sci..

[27]  Hong Peng,et al.  Fuzzy reasoning spiking neural P system for fault diagnosis , 2013, Inf. Sci..

[28]  Hong Peng,et al.  Adaptive fuzzy spiking neural P systems for fuzzy inference and learning , 2013, Int. J. Comput. Math..

[29]  Linqiang Pan,et al.  Normal Forms for Some Classes of Sequential Spiking Neural P Systems , 2013, IEEE Transactions on NanoBioscience.

[30]  Linqiang Pan,et al.  A Novel Bio-Sensor Based on DNA Strand Displacement , 2014, PloS one.

[31]  Xiangxiang Zeng,et al.  On Some Classes of Sequential Spiking Neural P Systems , 2014, Neural Computation.

[32]  Ferrante Neri,et al.  An Optimization Spiking Neural P System for Approximately Solving Combinatorial Optimization Problems , 2014, Int. J. Neural Syst..

[33]  Xiang Feng,et al.  Double-fold localized multiple matrixized learning machine , 2015, Inf. Sci..

[34]  Xiangrong Liu,et al.  Implementation of Arithmetic Operations With Time-Free Spiking Neural P Systems , 2015, IEEE Transactions on NanoBioscience.

[35]  Jürgen Schmidhuber,et al.  Deep learning in neural networks: An overview , 2014, Neural Networks.

[36]  Linqiang Pan,et al.  Spiking Neural P Systems With Rules on Synapses Working in Maximum Spikes Consumption Strategy , 2015, IEEE Transactions on NanoBioscience.

[37]  L. Pan,et al.  Spiking Neural P Systems With Rules on Synapses Working in Maximum Spiking Strategy , 2015 .

[38]  Henry N. Adorna,et al.  Spiking neural P systems with structural plasticity , 2015, Neural Computing and Applications.

[39]  Zhengyou He,et al.  Fault Diagnosis of Electric Power Systems Based on Fuzzy Reasoning Spiking Neural P Systems , 2015, IEEE Transactions on Power Systems.

[40]  Xin Li,et al.  A Spiking Neural System Based on DNA Strand Displacement , 2015 .

[41]  Linqiang Pan,et al.  Spiking Neural P Systems With Rules on Synapses Working in Maximum Spiking Strategy , 2014, IEEE Transactions on NanoBioscience.

[42]  Shitong Wang,et al.  Evolutionary sampling: A novel way of machine learning within a probabilistic framework , 2015, Inf. Sci..

[43]  Juan A. Botía Blaya,et al.  Generation of human computational models with machine learning , 2015, Inf. Sci..

[44]  Nikola K. Kasabov,et al.  Spiking neural network methodology for modelling, classification and understanding of EEG spatio-temporal data measuring cognitive processes , 2015, Inf. Sci..

[45]  Mario J. Pérez-Jiménez,et al.  Fuzzy Membrane Computing: Theory and Applications , 2015, Int. J. Comput. Commun. Control.

[46]  Yun Zhu,et al.  Efficient parallel boolean matrix based algorithms for computing composite rough set approximations , 2016, Inf. Sci..

[47]  Qinghua Hu,et al.  Multi-document summarization via group sparse learning , 2016, Inf. Sci..

[48]  Linqiang Pan,et al.  Cell-like spiking neural P systems , 2016, Theor. Comput. Sci..

[49]  Xun Wang,et al.  A computational approach for nuclear export signals identification using spiking neural P systems , 2018, Neural Computing and Applications.

[50]  Inés Couso,et al.  Machine learning models, epistemic set-valued data and generalized loss functions: An encompassing approach , 2016, Inf. Sci..

[51]  Linqiang Pan,et al.  Spiking neural P systems with request rules , 2016, Neurocomputing.

[52]  Xin Li,et al.  Construction of DNA nanotubes with controllable diameters and patterns using hierarchical DNA sub-tiles. , 2016, Nanoscale.

[53]  Pan Zheng,et al.  On the Computational Power of Spiking Neural P Systems with Self-Organization , 2016, Scientific Reports.

[54]  Hui Gao,et al.  Neuro-adaptive fault-tolerant control of high speed trains under traction-braking failures using self-structuring neural networks , 2016, Inf. Sci..

[55]  Marian Gheorghe,et al.  Kernel P Systems and Stochastic P Systems for Modelling and Formal Verification of Genetic Logic Gates , 2017 .