An Ultra-Low-Power Super Regeneration Oscillator-Based Transceiver With 177-$\mu$ W Leakage-Compensated PLL and Automatic Quench Waveform Generator

An ultra-low-power super regeneration oscillator (SRO) transceiver with a 177- μW ultra-low-power phase-locked loop (PLL) and automatic quench waveform generator (QWG) is presented. In order to decrease the PLL power consumption, the leakage current is measured at the VCO control voltage node, and the control voltage is compensated by the digital part. As a result, the frequency can be maintained near 2.37 GHz after the PLL is turned off. An automatic QWG circuit that can search for the critical current of the SRO automatically is proposed in order to mitigate the process, voltage, temperature variations of the conventional QWG. This chip is implemented using 90-nm CMOS technology. The die area of the full transceiver is 3 mm × 4 mm and that of the PLL is 0.4 mm × 0.9 mm. The leakage compensation and high-Q voltage-controlled oscillator (VCO) approach results in a frequency offset of 70 kHz and fluctuation of ±75 kHz (the maximum frequency error is 145 kHz at 60 ppm). The phase noise of the VCO output at 2.37 GHz is -103.5 dBc/Hz at 1-MHz offset. The average power consumption of the PLL is 177 μW from a 1.2-V supply voltage.

[1]  Mario Konijnenburg,et al.  A 2.4GHz ULP OOK single-chip transceiver for healthcare applications , 2011, 2011 IEEE International Solid-State Circuits Conference.

[2]  Hoi-Jun Yoo,et al.  Body area network: Technology, solutions, and standardization , 2011, ISSCC.

[3]  K. Pister,et al.  An Ultra-Low Power 2 . 4 GHz RF Transceiver for Wireless Sensor Networks in 0 . 13 μ m CMOS with 400 mV Supply and an Integrated Passive RX Front-End , 2006 .

[4]  Bumman Kim,et al.  Challenges and directions of ultra low energy wireless sensor nodes for biosignal monitoring , 2012, 2012 IEEE International Symposium on Circuits and Systems.

[5]  E.H. Armstrong,et al.  Some Recent Developments of Regenerative Circuits , 1922, Proceedings of the Institute of Radio Engineers.

[6]  N. P. van der Meijs,et al.  A 26 $\mu$ W 8 bit 10 MS/s Asynchronous SAR ADC for Low Energy Radios , 2011, IEEE Journal of Solid-State Circuits.

[7]  Anantha Chandrakasan,et al.  A 350μW CMOS MSK transmitter and 400μW OOK super-regenerative receiver for Medical Implant Communications , 2009, 2008 IEEE Symposium on VLSI Circuits.

[8]  A. C. W. Wong,et al.  A 0.9mW PLL integrated in an ultra-low-power SoC for WPAN and WBAN applications , 2010, 2010 Proceedings of ESSCIRC.

[9]  K.S.J. Pister,et al.  An Ultra-Low Power 2.4GHz RF Transceiver for Wireless Sensor Networks in 0.13/spl mu/m CMOS with 400mV Supply and an Integrated Passive RX Front-End , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.

[10]  Christofer Toumazou,et al.  A 1 V Wireless Transceiver for an Ultra-Low-Power SoC for Biotelemetry Applications , 2008, IEEE Journal of Solid-State Circuits.

[11]  S. Gambini,et al.  A 52 $\mu$ W Wake-Up Receiver With $-$ 72 dBm Sensitivity Using an Uncertain-IF Architecture , 2009, IEEE Journal of Solid-State Circuits.

[12]  M.P. Flynn,et al.  A Fully Integrated Auto-Calibrated Super-Regenerative Receiver in 0.13-$\mu{\hbox {m}}$ CMOS , 2007, IEEE Journal of Solid-State Circuits.

[13]  Mario Konijnenburg,et al.  A 2.4 GHz ULP OOK Single-Chip Transceiver for Healthcare Applications , 2011, IEEE Transactions on Biomedical Circuits and Systems.

[14]  Pietro Andreani,et al.  A 1.4mW 4.90-to-5.65GHz Class-C CMOS VCO with an Average FoM of 194.5dBc/Hz , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[15]  Kofi A. A. Makinwa,et al.  A 200 μA Duty-Cycled PLL for Wireless Sensor Nodes in 65 nm CMOS , 2010, IEEE Journal of Solid-State Circuits.