Automatic Diagnosis of Performance Problems in Database Management Systems

Database performance is directly linked to database management system (DBMS) resource allocation. Complex relationships between resources make problem diagnosis and performance tuning difficult, time-consuming tasks. Database administrators (DBAs) currently tune and re-tune the DBMS as the database grows and workloads change. Increased performance and reduced cost of ownership can be achieved by automating the tuning process, starting with resource allocation problem diagnosis. In this paper we overview an automatic diagnosis framework designed to diagnose resource problems. Our diagnosis model and results demonstrate an ability to correctly identify system bottlenecks for a generic on-line transaction processing workload

[1]  Joseph L. Hellerstein,et al.  Using Control Theory to Achieve Service Level Objectives In Performance Management , 2001, 2001 IEEE/IFIP International Symposium on Integrated Network Management Proceedings. Integrated Network Management VII. Integrated Management Strategies for the New Millennium (Cat. No.01EX470).

[2]  D. Bartholomew,et al.  Linear Programming: Methods and Applications , 1970 .

[3]  Sharon Curtis Dynamic programming: a different perspective , 1997, Algorithmic Languages and Calculi.

[4]  Iztok Savnik,et al.  Sequential diagnosis tool for system maintenance and repair , 1996 .

[5]  Joseph L. Hellerstein,et al.  Automated Drill Down: An Approach to Automated Problem Isolation for Performance Management , 1999, Int. CMG Conference.

[6]  Brian C. Williams,et al.  Diagnosis with Behavioral Modes , 1989, IJCAI.

[7]  Darcy G. Benoit Automated Diagnosis and Control of DBMS Resources , 2000, EDBT PhD Workshop.

[8]  Carla E. Brodley,et al.  Multivariate decision trees , 2004, Machine Learning.

[9]  Surajit Chaudhuri,et al.  Automating Statistics Management for Query Optimizers , 2001, IEEE Trans. Knowl. Data Eng..

[10]  Gerhard Weikum,et al.  Towards Self-Tuning Memory Management for Data Servers , 1999, IEEE Data Eng. Bull..

[11]  R. Bellman Dynamic programming. , 1957, Science.

[12]  Sharon A. Curtis,et al.  A Relational Approach To Optimization Problems , 1996 .

[13]  P. Utgoff,et al.  Multivariate Decision Trees , 1995, Machine Learning.

[14]  John Mylopoulos,et al.  Building knowledge base management systems , 1996, The VLDB Journal.

[15]  Surajit Chaudhuri,et al.  Automating statistics management for query optimizers , 2000, Proceedings of 16th International Conference on Data Engineering (Cat. No.00CB37073).

[16]  Brian C. Williams,et al.  Diagnosing Multiple Faults , 1987, Artif. Intell..

[17]  Joseph L. Hellerstein Automated Tuning Systems: Beyond Decision Support , 1997, Int. CMG Conference.

[18]  Michael Stonebraker,et al.  The Asilomar report on database research , 1998, SGMD.

[19]  Kenneth C. Sevcik Data Base System Performance Prediction Using an Analytical Model (Invited Paper) , 1981, VLDB.

[20]  Shahram Ghandeharizadeh,et al.  Letter from the Special Issue Editor , 1994, IEEE Data Eng. Bull..

[21]  John P. McDermott,et al.  R1 Revisited: Four Years in the Trenches , 1984, AI Mag..

[22]  Agnar Aamodt,et al.  Case-Based Reasoning: Foundational Issues, Methodological Variations, and System Approaches , 1994, AI Commun..

[23]  Miron Livny,et al.  Towards Automated Performance Tuning for Complex Workloads , 1994, VLDB.

[24]  Richard S. Bird,et al.  From Dynamic Programming to Greedy Algorithms , 1993, Formal Program Development.

[25]  Randall Davis,et al.  Model-based reasoning: troubleshooting , 1988 .

[26]  Gerhard Weikum,et al.  Rethinking Database System Architecture: Towards a Self-Tuning RISC-Style Database System , 2000, VLDB.

[27]  Kurt P. Brown Goal-oriented memory allocation in database management systems , 1996 .

[28]  Miron Livny,et al.  Towards an Autopilot in the DBMS Performance Cockpit , 1993, HPTS.

[29]  Edward D. Lazowska,et al.  Quantitative system performance - computer system analysis using queueing network models , 1983, Int. CMG Conference.

[30]  Ron Rymon More on Goal-Directed Diagnosis , 1992 .

[31]  R. Murray The Teaching Assistant , 1996 .

[32]  Surajit Chaudhuri,et al.  Automated Selection of Materialized Views and Indexes in SQL Databases , 2000, VLDB.

[33]  George Luger,et al.  Artificial Intelligence: Structures and Strategies for Complex Problem Solving (5th Edition) , 2004 .

[34]  Michael K. Molloy Fundamentals of Performance Modeling , 1990, SIGMETRICS Perform. Evaluation Rev..

[35]  Donald F. Ferguson,et al.  Goal-oriented dynamic buffer pool management for data base systems , 1995, Proceedings of First IEEE International Conference on Engineering of Complex Computer Systems. ICECCS'95.

[36]  Min Zheng,et al.  Dynamic Reconfiguration Algorithm: Dynamically Tuning Multiple Buffer Pools , 2000, DEXA.

[37]  Igor Mozetic,et al.  Hierarchical Model-Based Diagnosis , 1991, Int. J. Man Mach. Stud..

[38]  Daniel M. Dias,et al.  A modeling study of the TPC-C benchmark , 1993, SIGMOD '93.

[39]  Eric Horvitz,et al.  Decision theory in expert systems and artificial intelligenc , 1988, Int. J. Approx. Reason..

[40]  Patrick Martin,et al.  Configuring buffer pools in DB2 UDB , 2002, CASCON.

[41]  Gerhard Weikum,et al.  The COMFORT Automatic Tuning Project, Invited Project Review , 1994, Inf. Syst..