Distinct brain transcriptome profiles in C9orf72-associated and sporadic ALS

[1]  D. Ito,et al.  Characterization of the dipeptide repeat protein in the molecular pathogenesis of c9FTD/ALS. , 2015, Human molecular genetics.

[2]  Zhouteng Tao,et al.  Nucleolar stress and impaired stress granule formation contribute to C9orf72 RAN translation-induced cytotoxicity. , 2015, Human molecular genetics.

[3]  N. Shneider,et al.  Antisense Proline-Arginine RAN Dipeptides Linked to C9ORF72-ALS/FTD Form Toxic Nuclear Aggregates that Initiate In Vitro and In Vivo Neuronal Death , 2014, Neuron.

[4]  Wei Li,et al.  Dynamic analyses of alternative polyadenylation from RNA-seq reveal a 3′-UTR landscape across seven tumour types , 2014, Nature Communications.

[5]  Chaolin Zhang,et al.  Loss of MBNL leads to disruption of developmentally regulated alternative polyadenylation in RNA-mediated disease. , 2014, Molecular cell.

[6]  M. Mesulam,et al.  Ataxin-2 as potential disease modifier in C9ORF72 expansion carriers , 2014, Neurobiology of Aging.

[7]  S. McKnight,et al.  Poly-dipeptides encoded by the C9orf72 repeats bind nucleoli, impede RNA biogenesis, and kill cells , 2014, Science.

[8]  O. Hendrich,et al.  C9orf72 repeat expansions cause neurodegeneration in Drosophila through arginine-rich proteins , 2014, Science.

[9]  Kevin F. Bieniek,et al.  Aggregation-prone c9FTD/ALS poly(GA) RAN-translated proteins cause neurotoxicity by inducing ER stress , 2014, Acta Neuropathologica.

[10]  J. Hodges,et al.  Cerebellar Integrity in the Amyotrophic Lateral Sclerosis - Frontotemporal Dementia Continuum , 2014, PloS one.

[11]  M. Mann,et al.  C9orf72 FTLD/ALS-associated Gly-Ala dipeptide repeat proteins cause neuronal toxicity and Unc119 sequestration , 2014, Acta Neuropathologica.

[12]  O. Hardiman,et al.  Patterns of cerebral and cerebellar white matter degeneration in ALS , 2014, Journal of Neurology, Neurosurgery & Psychiatry.

[13]  Krishna R. Kalari,et al.  MAP-RSeq: Mayo Analysis Pipeline for RNA sequencing , 2014, BMC Bioinformatics.

[14]  Stuart A. Wilson,et al.  Sequestration of multiple RNA recognition motif-containing proteins by C9orf72 repeat expansions , 2014, Brain : a journal of neurology.

[15]  Wei Li,et al.  CFIm25 links Alternative Polyadenylation to Glioblastoma Tumor Suppression , 2014, Nature.

[16]  Lorne Zinman,et al.  Mutations in the Matrin 3 gene cause familial amyotrophic lateral sclerosis , 2014, Nature Neuroscience.

[17]  J. Ule,et al.  Hexanucleotide Repeats in ALS/FTD Form Length-Dependent RNA Foci, Sequester RNA Binding Proteins, and Are Neurotoxic , 2013, Cell reports.

[18]  Gene W. Yeo,et al.  Targeted degradation of sense and antisense C9orf72 RNA foci as therapy for ALS and frontotemporal degeneration , 2013, Proceedings of the National Academy of Sciences.

[19]  L. Petrucelli,et al.  Targeting RNA Foci in iPSC-Derived Motor Neurons from ALS Patients with a C9ORF72 Repeat Expansion , 2013, Science Translational Medicine.

[20]  E. Kremmer,et al.  Bidirectional transcripts of the expanded C9orf72 hexanucleotide repeat are translated into aggregating dipeptide repeat proteins , 2013, Acta Neuropathologica.

[21]  Kevin F. Bieniek,et al.  Antisense transcripts of the expanded C9ORF72 hexanucleotide repeat form nuclear RNA foci and undergo repeat-associated non-ATG translation in c9FTD/ALS , 2013, Acta Neuropathologica.

[22]  Nipun A. Mistry,et al.  RNA Toxicity from the ALS/FTD C9ORF72 Expansion Is Mitigated by Antisense Intervention , 2013, Neuron.

[23]  Brendan J. Frey,et al.  A compendium of RNA-binding motifs for decoding gene regulation , 2013, Nature.

[24]  Michael Q. Zhang,et al.  OLego: fast and sensitive mapping of spliced mRNA-Seq reads using small seeds , 2013, Nucleic acids research.

[25]  E. Kremmer,et al.  The C9orf72 GGGGCC Repeat Is Translated into Aggregating Dipeptide-Repeat Proteins in FTLD/ALS , 2013, Science.

[26]  Michael Benatar,et al.  Prion-like domain mutations in hnRNPs cause multisystem proteinopathy and ALS , 2013, Nature.

[27]  Kevin F. Bieniek,et al.  Unconventional Translation of C9ORF72 GGGGCC Expansion Generates Insoluble Polypeptides Specific to c9FTD/ALS , 2013, Neuron.

[28]  C. Broeckhoven,et al.  hnRNP A3 binds to GGGGCC repeats and is a constituent of p62-positive/TDP43-negative inclusions in the hippocampus of patients with C9orf72 mutations , 2013, Acta Neuropathologica.

[29]  Yongsheng Shi,et al.  Alternative polyadenylation: new insights from global analyses. , 2012, RNA.

[30]  M. Tatsuka,et al.  PARP6, a mono(ADP-ribosyl) transferase and a negative regulator of cell proliferation, is involved in colorectal cancer development. , 2012, International journal of oncology.

[31]  Rosa Rademakers,et al.  How do C9ORF72 repeat expansions cause amyotrophic lateral sclerosis and frontotemporal dementia: can we learn from other noncoding repeat expansion disorders? , 2012, Current opinion in neurology.

[32]  Damian Szklarczyk,et al.  STRING v9.1: protein-protein interaction networks, with increased coverage and integration , 2012, Nucleic Acids Res..

[33]  Jonathan M. Bekisz,et al.  Cognitive decline and reduced survival in C9orf72 expansion frontotemporal degeneration and amyotrophic lateral sclerosis , 2012, Journal of Neurology, Neurosurgery & Psychiatry.

[34]  Nick C Fox,et al.  Longitudinal neuroimaging and neuropsychological profiles of frontotemporal dementia with C9ORF72 expansions , 2012, Alzheimer's Research & Therapy.

[35]  M. Ares,et al.  Muscleblind-like 2-Mediated Alternative Splicing in the Developing Brain and Dysregulation in Myotonic Dystrophy , 2012, Neuron.

[36]  R. Elkon,et al.  The Poly(A)-Binding Protein Nuclear 1 Suppresses Alternative Cleavage and Polyadenylation Sites , 2012, Cell.

[37]  H. Hakonarson,et al.  Evaluating the role of the FUS/TLS-related gene EWSR1 in amyotrophic lateral sclerosis. , 2012, Human molecular genetics.

[38]  David T. Jones,et al.  Characterization of frontotemporal dementia and/or amyotrophic lateral sclerosis associated with the GGGGCC repeat expansion in C9ORF72 , 2012, Brain : a journal of neurology.

[39]  Gene W. Yeo,et al.  Integrative genome‐wide analysis reveals cooperative regulation of alternative splicing by hnRNP proteins , 2012, Cell reports.

[40]  T. Ferman,et al.  Clinical and neuropathologic heterogeneity of c9FTD/ALS associated with hexanucleotide repeat expansion in C9ORF72 , 2011, Acta Neuropathologica.

[41]  David Heckerman,et al.  A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD , 2011, Neuron.

[42]  Bruce L. Miller,et al.  Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS , 2011, Neuron.

[43]  R. Petersen,et al.  Neuropathologically defined subtypes of Alzheimer's disease with distinct clinical characteristics: a retrospective study , 2011, The Lancet Neurology.

[44]  Philip Machanick,et al.  MEME-ChIP: motif analysis of large DNA datasets , 2011, Bioinform..

[45]  Robert H. Brown,et al.  Mutational analysis reveals the FUS homolog TAF15 as a candidate gene for familial amyotrophic lateral sclerosis , 2011, American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics.

[46]  John Q. Trojanowski,et al.  Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS , 2010, Nature.

[47]  Dorothea Emig,et al.  AltAnalyze and DomainGraph: analyzing and visualizing exon expression data , 2010, Nucleic Acids Res..

[48]  L. Petrucelli,et al.  Review: Transactive response DNA‐binding protein 43 (TDP‐43): mechanisms of neurodegeneration , 2010, Neuropathology and applied neurobiology.

[49]  Davis J. McCarthy,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[50]  L. Petrucelli,et al.  Aberrant cleavage of TDP-43 enhances aggregation and cellular toxicity , 2009, Proceedings of the National Academy of Sciences.

[51]  Xun Hu,et al.  Mutations in FUS, an RNA Processing Protein, Cause Familial Amyotrophic Lateral Sclerosis Type 6 , 2009, Science.

[52]  S. Horvath,et al.  WGCNA: an R package for weighted correlation network analysis , 2008, BMC Bioinformatics.

[53]  J. Trojanowski,et al.  Evidence of multisystem disorder in whole-brain map of pathological TDP-43 in amyotrophic lateral sclerosis. , 2008, Archives of neurology.

[54]  Xun Hu,et al.  TDP-43 Mutations in Familial and Sporadic Amyotrophic Lateral Sclerosis , 2008, Science.

[55]  Maria Luisa Gorno-Tempini,et al.  Frontal paralimbic network atrophy in very mild behavioral variant frontotemporal dementia. , 2008, Archives of neurology.

[56]  Michael L. Creech,et al.  Integration of biological networks and gene expression data using Cytoscape , 2007, Nature Protocols.

[57]  Didier Dormont,et al.  Diffusion tensor imaging and voxel based morphometry study in amyotrophic lateral sclerosis: relationships with motor disability , 2007, Journal of Neurology, Neurosurgery & Psychiatry.

[58]  Bruce L. Miller,et al.  Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis , 2006, Science.

[59]  S Miyano,et al.  Open source clustering software. , 2004, Bioinformatics.

[60]  T. Cristofaro,et al.  Identification of alternative splicing of spinocerebellar ataxia type 2 gene. , 2001, Gene.

[61]  J. Pouysségur,et al.  Identification of Alternative Spliced Variants of Human Hypoxia-inducible Factor-1α* , 2000, The Journal of Biological Chemistry.

[62]  M. Swash,et al.  El Escorial revisited: Revised criteria for the diagnosis of amyotrophic lateral sclerosis , 2000, Amyotrophic lateral sclerosis and other motor neuron disorders : official publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases.

[63]  M. Hutton,et al.  Fibrillogenesis of Tau: Insights from Tau Missense Mutations in FTDP‐17 , 1999, Brain pathology.

[64]  B. Brooks,et al.  El escorial World Federation of Neurology criteria for the diagnosis of amyotrophic lateral sclerosis , 1994, Journal of the Neurological Sciences.

[65]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[66]  H. Braak,et al.  Neuropathological stageing of Alzheimer-related changes , 2004, Acta Neuropathologica.

[67]  Mulder Dw Clinical limits of amyotrophic lateral sclerosis. , 1982 .

[68]  J L Haines,et al.  Supporting Online Material Materials and Methods Figs. S1 to S7 Tables S1 to S4 References Mutations in the Fus/tls Gene on Chromosome 16 Cause Familial Amyotrophic Lateral Sclerosis , 2022 .