Local piezoresponse and polarization switching in nucleobase thymine microcrystals

Thymine (2-oxy-4-oxy-5 methyl pyrimidine) is one of the four nucleobases of deoxyribonucleic acid (DNA). In the DNA molecule, thymine binds to adenine via two hydrogen bonds, thus stabilizing the nucleic acid structure and is involved in pairing and replication. Here, we show that synthetic thymine microcrystals grown from the solution exhibit local piezoelectricity and apparent ferroelectricity, as evidenced by nanoscale electromechanical measurements via Piezoresponse Force Microscopy. Our experimental results demonstrate significant electromechanical activity and polarization switchability of thymine, thus opening a pathway for piezoelectric and ferroelectric-based applications of thymine and, perhaps, of other DNA nucleobase materials. The results are supported by molecular modeling of polarization switching under an external electric field.

[1]  S. Bauer,et al.  Ferroelectric Polarization in Nanocrystalline Hydroxyapatite Thin Films on Silicon , 2013, Scientific Reports.

[2]  A. Kholkin,et al.  Molecular modeling of the piezoelectric effect in the ferroelectric polymer poly(vinylidene fluoride) (PVDF) , 2013, Journal of Molecular Modeling.

[3]  E. Reed,et al.  Flexural electromechanical coupling: a nanoscale emergent property of boron nitride bilayers. , 2013, Nano letters.

[4]  Xinqiang Wang,et al.  Ferroelastic phase transition and switchable dielectric behavior associated with ordering of molecular motion in a perovskite-like architectured supramolecular cocrystal , 2013 .

[5]  Evan J. Reed,et al.  Intrinsic Piezoelectricity in Two-Dimensional Materials , 2012 .

[6]  Sergei V. Kalinin,et al.  Nanoscale Ferroelectricity in Crystalline γ‐Glycine , 2012 .

[7]  Ute Drechsler,et al.  Atomic force microscopy with nanoscale cantilevers resolves different structural conformations of the DNA double helix. , 2012, Nano letters.

[8]  Sergei V. Kalinin,et al.  Switchable induced polarization in LaAlO3/SrTiO3 heterostructures. , 2012, Nano letters.

[9]  A. Kholkin,et al.  BioFerroelectricity: Diphenylalanine Peptide Nanotubes Computational Modeling and Ferroelectric Properties at the Nanoscale , 2012 .

[10]  Harold S. Park,et al.  Surface piezoelectricity: Size effects in nanostructures and the emergence of piezoelectricity in non-piezoelectric materials , 2011 .

[11]  Patrick R. Briddon,et al.  Accurate Kohn–Sham DFT with the speed of tight binding: Current techniques and future directions in materials modelling , 2011 .

[12]  J. Slinker,et al.  DNA charge transport over 34 nm. , 2011, Nature chemistry.

[13]  A. Kholkin,et al.  Local piezoelectric properties of ZnO thin films prepared by RF-plasma-assisted pulsed-laser deposition method , 2010, Nanotechnology.

[14]  Sergei V. Kalinin,et al.  Local polarization dynamics in ferroelectric materials , 2010 .

[15]  Sergei V. Kalinin,et al.  Double-layer mediated electromechanical response of amyloid fibrils in liquid environment. , 2010, ACS nano.

[16]  N. Amdursky,et al.  Strong piezoelectricity in bioinspired peptide nanotubes. , 2010, ACS nano.

[17]  Sergei V. Kalinin,et al.  Electromechanical Imaging and Spectroscopy of Ferroelectric and Piezoelectric Materials: State of the Art and Prospects for the Future , 2009 .

[18]  A. Kholkin,et al.  Room temperature surface piezoelectricity in SrTiO3 ceramics via piezoresponse force microscopy , 2008, 0810.3672.

[19]  S. Stafström,et al.  A Monte Carlo study of charge transfer in DNA. , 2008, The Journal of chemical physics.

[20]  R. Waser,et al.  Dynamics of ferroelectric nanodomains in BaTiO3 epitaxial thin films via piezoresponse force microscopy , 2008, Nanotechnology.

[21]  Roger E. Miller,et al.  Infrared laser spectroscopy of uracil and thymine in helium nanodroplets: vibrational transition moment angle study. , 2007, The journal of physical chemistry. A.

[22]  Sergei V. Kalinin,et al.  High-resolution imaging of proteins in human teeth by scanning probe microscopy. , 2007, Biochemical and biophysical research communications.

[23]  R. Ramesh,et al.  Controlling self-assembled perovskite-spinel nanostructures. , 2006, Nano letters.

[24]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[25]  Sergei V. Kalinin,et al.  Electromechanical imaging of biomaterials by scanning probe microscopy. , 2006, Journal of structural biology.

[26]  M. Frank-Kamenetskii,et al.  Base-stacking and base-pairing contributions into thermal stability of the DNA double helix , 2006, Nucleic acids research.

[27]  M. Mascini,et al.  A DNA-based piezoelectric biosensor: strategies for coupling nucleic acids to piezoelectric devices. , 2006, Talanta.

[28]  G. Suchaneck,et al.  Domain populations in lead zirconate titanate thin films of different compositions via piezoresponse force microscopy , 2005 .

[29]  M. Tyunina,et al.  Relaxation of induced polar state in relaxor PbMg1∕3Nb2∕3O3 thin films studied by piezoresponse force microscopy , 2005 .

[30]  Sergei V. Kalinin,et al.  Electromechanical imaging of biological systems with sub-10 nm resolution , 2005, 2008 13th International Symposium on Electrets.

[31]  Sergei V. Kalinin,et al.  Quantitative analysis of nanoscale switching in SrBi 2 Ta 2 O 9 thin films by piezoresponse force microscopy , 2004 .

[32]  Gil Rosenman,et al.  Piezoelectric Effect in Human Bones Studied in Nanometer Scale , 2004 .

[33]  A. Srivastava,et al.  MEMS-based systems for DNA sequencing and forensics , 2002, Proceedings of IEEE Sensors.

[34]  V. M. Komarov,et al.  Polymorphism of hydrogen bonding in the short double helixes of oligonucleotides: Semiempirical quantum chemical study , 2002 .

[35]  D. Häder,et al.  UV-induced DNA damage and repair: a review , 2002, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[36]  Mark A. Ratner,et al.  Electronic properties of DNA , 2001 .

[37]  A. Safari,et al.  Characterization of the effective electrostriction coefficients in ferroelectric thin films , 2001 .

[38]  M. Ratner,et al.  Charge hopping in DNA. , 2001, Journal of the American Chemical Society.

[39]  E. Lattman,et al.  High apparent dielectric constants in the interior of a protein reflect water penetration. , 2000, Biophysical journal.

[40]  Paul Muralt,et al.  Properties of aluminum nitride thin films for piezoelectric transducers and microwave filter applications , 1999 .

[41]  J. V. D. Maarel Effect of Spatial Inhomogeneity in Dielectric Permittivity on DNA Double Layer Formation , 1999 .

[42]  Hans-Werner Fink,et al.  Electrical conduction through DNA molecules , 1999, Nature.

[43]  S O Kelley,et al.  Electron transfer between bases in double helical DNA. , 1999, Science.

[44]  P. Günter,et al.  Ferroelectric domain switching in tri-glycine sulphate and barium-titanate bulk single crystals by scanning force microscopy , 1998 .

[45]  B D Ratner,et al.  Direct measurement of hydrogen bonding in DNA nucleotide bases by atomic force microscopy. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[46]  M R Arkin,et al.  Long-range photoinduced electron transfer through a DNA helix. , 1993, Science.

[47]  L. V. Yakushevich,et al.  Nonlinear DNA dynamics: A new model , 1989 .

[48]  P. Hansma,et al.  The scanning ion-conductance microscope. , 1989, Science.

[49]  F. Flores,et al.  A simple approach to heterojunctions , 1977 .

[50]  S. Shtrikman,et al.  Mechanism Leading to Ferroelectricity Induced in Centrosymmetric Crystals by Antiferromagnetic Transitions , 1970 .

[51]  Noriyoshi Sakabe,et al.  The crystal structure of thymine , 1969 .

[52]  R. Gerdil The crystal structure of thymine monohydrate , 1961 .

[53]  F. Crick,et al.  Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid , 1953, Nature.

[54]  James G. Grote,et al.  Bio-Organic Optoelectronic Devices Using DNA , 2009 .

[55]  Cheulhee Jung,et al.  Novel dielectric-modulated field-effect transistor for label-free DNA detection , 2008 .

[56]  J. Møller,et al.  The Effect of Hydrogen Bonding on the Structures of Uracil and Some Methyl Derivatives Studied by Experiment and Theory. , 1999 .

[57]  V. Shur,et al.  Kinetics of ferroelectric domain structure: Retardation effects , 1997 .