Evaluation of flexural fracture toughness for quasi-brittle structural materials using a simple test method

As new structural concepts such as partial prestressing and steel-free bridge decks are more widely accepted and used, there is an increasing need for a reliable and reproducible fracture performance criterion that can describe resistance to crack growth. The required criterion should also be easy to determine experimentally so that it can be incorporated in structural specifications. The nonlinear behaviour of concrete and masonry materials suggested that quasi-brittle fracture mechanics approaches may be the most suitable for determining their fracture performance. The effective elastic crack model originally developed by Karihaloo and Nallathambi (1989) was modified to evaluate the critical crack depth under pure flexural stresses. A computer program was developed to calculate this depth iteratively from the experimental results. An experimental programme examining the fracture performance of four different structural materials (high performance concrete, mortar, fibre reinforced concrete, and masonry ...

[1]  A Fracture Mechanics Approach to Failure in Fibrous Composites , 1974 .

[2]  Surendra P. Shah,et al.  Fracture Mechanics of Concrete: Applications of Fracture Mechanics to Concrete, Rock and Other Quasi-Brittle Materials , 1995 .

[3]  B. Cotterell Brittle fracture in compression , 1972 .

[4]  F. Moavenzadeh,et al.  FRACTURE OF CONCRETE , 1969 .

[5]  B. Karihaloo,et al.  AN IMPROVED EFFECTIVE CRACK MODEL FOR THE DETERMINATION OF FRACTURE TOUGHNESS OF CONCRETE , 1989 .

[6]  Surendra P. Shah,et al.  Griffith Fracture Criterion and Concrete , 1971 .

[7]  A. A. Griffith The Phenomena of Rupture and Flow in Solids , 1921 .

[8]  A. Neville Properties of Concrete , 1968 .

[9]  Amin Ghali,et al.  Structural Analysis: A Unified Classical and Matrix Approach, Seventh Edition , 1978 .

[10]  Baidar Bakht,et al.  FRC DECK SLABS WITHOUT TENSILE REINFORCEMENT , 1996 .

[11]  B. Mobasher,et al.  Experimental R-Curves for Assessment of Toughening in Fiber Reinforced Cementitious Composites , 1995, SP-155: Testing of Fiber Reinforced Concrete.

[12]  Jaime Planas,et al.  Fracture mechanics applied to concrete , 2000 .

[13]  Alberto Carpinteri,et al.  Stability of Fracturing Process in RC Beams , 1984 .

[14]  J. P. Romualdi,et al.  Tensile Strength of Concrete Affected by Uniformly Distributed and Closely Spaced Short Lengths of Wire Reinforcement , 1964 .

[15]  Arthur H. Nilson,et al.  Design of concrete structures , 1972 .

[16]  Surendra P. Shah,et al.  Fracture behavior and analysis of fiber reinforced concrete beams , 1980 .

[17]  Surendra P. Shah,et al.  A model for predicting fracture resistance of fiber reinforced concrete , 1983 .

[18]  Leon M Keer,et al.  Failure characteristics of short anchor bolts embedded in a brittle material , 1986, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[19]  Hiroshi Tada,et al.  The stress analysis of cracks handbook , 2000 .

[20]  Alberto Carpinteri,et al.  Minimum reinforcement in high strength concrete , 1990 .

[21]  J. G. Kaufman,et al.  Progress in flaw growth and fracture toughness testing : proceedings of the 1972 National Symposium on Fracture Mechanics , 1973 .

[22]  Alberto Carpinteri,et al.  Applications of Fracture Mechanics to Reinforced Concrete , 2018 .

[23]  Brian N. Cox,et al.  Concepts for bridged cracks in fracture and fatigue , 1994 .

[24]  N. Banthia,et al.  Measurement of Flexural Toughness of Fiber-Reinforced Concrete Using a Novel Technique—Part 2: Performance of Various Composites , 2000 .

[25]  O. Gjørv,et al.  Notch sensitivity and fracture toughness of concrete , 1977 .

[26]  Robert Ellis,et al.  Calculus with Analytical Geometry , 1989 .

[27]  N. Shrive,et al.  Understanding the Cause of Crackingin Concrete: A Diagnostic Aid , 1985 .

[28]  D. S. Dugdale Yielding of steel sheets containing slits , 1960 .

[30]  John R. Rice,et al.  Some further results of J-integral analysis and estimates. , 1973 .

[31]  G. I. Barenblatt THE MATHEMATICAL THEORY OF EQUILIBRIUM CRACKS IN BRITTLE FRACTURE , 1962 .

[32]  Surendra P. Shah,et al.  Fiber-Reinforced Cement Composites , 1992 .

[33]  Sami H. Rizkalla,et al.  Transverse reinforcement effect on cracking behaviour of R.C. members , 1983 .

[34]  Z. Bažant,et al.  Crack band theory for fracture of concrete , 1983 .

[35]  Nemkumar Banthia,et al.  Influence of High-Reactivity Metakaolin and Silica Fume on the Flexural Toughness of High-Performance Steel Fiber Reinforced Concrete , 1998 .

[36]  N. G. Shrive,et al.  Brittle fracture in compression: Mechanisms, models and criteria , 1995 .

[37]  Antoine E. Naaman,et al.  Fracture Model for Fiber Reinforced Concrete , 1983 .

[38]  Surendra P. Shah,et al.  Two Parameter Fracture Model for Concrete , 1985 .

[39]  J. Glucklich Fracture of Plain Concrete , 1963 .

[40]  Sidney Mindess,et al.  The J-integral as a fracture criterion for fiber reinforced concrete , 1977 .

[41]  J. Lenain,et al.  The resistance to crack growth of asbestos cement , 1979 .

[42]  W. Pilkey Formulas for stress, strain, and structural matrices , 1994 .

[43]  S. Diamond,et al.  The cracking and fracture of mortar , 1982 .

[44]  A. Hillerborg Fracture mechanics concepts applied to moment capacity and rotational capacity of reinforced concrete beams , 1990 .

[45]  Zdenek P. Bazant,et al.  Fatigue Fracture of High-Strength Concrete and Size Effect , 1993 .

[46]  P. Wedding,et al.  Definition and Measurement of Flexural Toughness Parameters for Fiber Reinforced Concrete , 1982 .

[47]  A. Hillerborg,et al.  Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements , 1976 .