Prediction intervals for integrals of Gaussian random fields

Methodology is proposed for the construction of prediction intervals for integrals of Gaussian random fields over bounded regions (called block averages in the geostatistical literature) based on observations at a finite set of sampling locations. Two bootstrap calibration algorithms are proposed, termed indirect and direct, aimed at improving upon plug-in prediction intervals in terms of coverage probability. A simulation study is carried out that illustrates the effectiveness of both procedures, and these procedures are applied to estimate block averages of chromium traces in a potentially contaminated region in Switzerland.

[1]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .

[2]  A. O'Hagan,et al.  Bayes–Hermite quadrature , 1991 .

[3]  Ian R. Harris Predictive fit for natural exponential families , 1989 .

[4]  David R. Cox,et al.  Prediction Intervals and Empirical Bayes Confidence Intervals , 1975, Journal of Applied Probability.

[5]  J. Lawless,et al.  Frequentist prediction intervals and predictive distributions , 2005 .

[6]  Sara Sjöstedt de Luna,et al.  The Bootstrap and Kriging Prediction Intervals , 2003 .

[7]  A note about calibrated prediction regions and distributions , 2012 .

[8]  Robert Bartle,et al.  The Elements of Real Analysis , 1977, The Mathematical Gazette.

[9]  Victor De Oliveira,et al.  On shortest prediction intervals in log-Gaussian random fields , 2009, Comput. Stat. Data Anal..

[10]  Paolo Vidoni A note on modified estimative prediction limits and distributions , 1998 .

[11]  Katsuto Tanaka,et al.  Time Series Analysis: Nonstationary and Noninvertible Distribution Theory , 1996 .

[12]  Hao Zhang Inconsistent Estimation and Asymptotically Equal Interpolations in Model-Based Geostatistics , 2004 .

[13]  Timothy C. Coburn,et al.  Geostatistics for Natural Resources Evaluation , 2000, Technometrics.

[14]  William Q. Meeker,et al.  Statistical Prediction Based on Censored Life Data , 1999, Technometrics.

[15]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[16]  R. Webster,et al.  Geostatistical analysis of soil contamination in the Swiss Jura. , 1994, Environmental pollution.

[17]  harald Cramer,et al.  Stationary And Related Stochastic Processes , 1967 .

[18]  N. Cressie The origins of kriging , 1990 .

[19]  K. Mardia,et al.  Maximum likelihood estimation of models for residual covariance in spatial regression , 1984 .

[20]  D. Cox,et al.  Inference and Asymptotics , 1994 .

[21]  Paolo Vidoni,et al.  Improved Prediction Limits for a General Class of Gaussian Models , 2010 .

[22]  Noel A Cressie,et al.  Asymptotics for REML estimation of spatial covariance parameters , 1996 .

[23]  Best unbiased prediction for Gaussian and log-Gaussian processes , 2004 .

[24]  A E Gelfand,et al.  On the change of support problem for spatio-temporal data. , 2001, Biostatistics.

[25]  R. Beran Calibrating Prediction Regions , 1990 .

[26]  Incorporating parameter uncertainty into prediction intervals for spatial data modeled via a parametric variogram , 2003 .

[27]  Lina Schelin,et al.  Kriging Prediction Intervals Based on Semiparametric Bootstrap , 2010 .

[28]  Corwin L. Atwood,et al.  Approximate Tolerance Intervals, Based on Maximum Likelihood Estimates , 1984 .

[29]  Linda J. Young,et al.  A Geostatistical Approach to Linking Geographically Aggregated Data From Different Sources , 2007 .

[30]  B. Kedem,et al.  Bayesian Prediction of Transformed Gaussian Random Fields , 1997 .

[31]  C. Gotway,et al.  Combining Incompatible Spatial Data , 2002 .

[32]  J. Chilès,et al.  Geostatistics: Modeling Spatial Uncertainty , 1999 .

[33]  V. Oliveira On Optimal Point and Block Prediction in Log-Gaussian Random Fields , 2006 .

[34]  M. Stein,et al.  A Bayesian analysis of kriging , 1993 .

[35]  David R. Cox,et al.  Prediction and asymptotics , 1996 .

[36]  Noel A Cressie,et al.  Block Kriging for Lognormal Spatial Processes , 2006 .

[37]  Adjusting estimative prediction limits , 2007 .