A topology optimization method based on the level set method for the design of negative permeability dielectric metamaterials

Abstract This paper presents a level set-based topology optimization method for the design of negative permeability dielectric metamaterials. Metamaterials are artificial materials that display extraordinary physical properties that are unavailable with natural materials. The aim of the formulated optimization problem is to find optimized layouts of a dielectric material that achieve negative permeability. The presence of grayscale areas in the optimized configurations critically affects the performance of metamaterials, positively as well as negatively, but configurations that contain grayscale areas are highly impractical from an engineering and manufacturing point of view. Therefore, a topology optimization method that can obtain clear optimized configurations is desirable. Here, a level set-based topology optimization method incorporating a fictitious interface energy is applied to a negative permeability dielectric metamaterial design problem. The optimization algorithm uses the Finite Element Method (FEM) for solving the equilibrium and adjoint equations, and design problems are formulated for both two- and three-dimensional cases. First, the level set-based topology optimization method is explained, and the optimization problems for the design of metamaterials are then discussed. Several optimum design examples for the design of dielectric metamaterials that demonstrate negative effective permeability at prescribed frequencies are provided to confirm the utility and validity of the presented method.

[1]  Takayuki Yamada,et al.  A topology optimization method based on the level set method incorporating a fictitious interface energy , 2010 .

[2]  N. Kikuchi,et al.  A homogenization method for shape and topology optimization , 1991 .

[3]  James K. Guest,et al.  Achieving minimum length scale in topology optimization using nodal design variables and projection functions , 2004 .

[4]  A. Lai,et al.  Demonstration of Negative Refraction in a Cutoff Parallel-Plate Waveguide Loaded With 2-D Square Lattice of Dielectric Resonators , 2007, IEEE Transactions on Microwave Theory and Techniques.

[5]  Ole Sigmund,et al.  Systematic Design of Metamaterials by Topology Optimization , 2009 .

[6]  Jae Seok Choi,et al.  Design and application of layered composites with the prescribed magnetic permeability , 2010 .

[7]  Xiaoming Wang,et al.  A level set method for structural topology optimization , 2003 .

[8]  G. W. Reddien,et al.  Projection Methods , 2021, Introduction to the Numerical Solution of Markov Chains.

[9]  Ole Sigmund,et al.  A topology optimization method for design of negative permeability metamaterials , 2010 .

[10]  T. Cui,et al.  An omnidirectional electromagnetic absorber made of metamaterials , 2010 .

[11]  Kazuo Sato,et al.  Level set‐based topology optimization targeting dielectric resonator‐based composite right‐ and left‐handed transmission lines , 2012 .

[12]  Jeonghoon Yoo,et al.  Structural optimization in magnetic devices by the homogenization design method , 2000 .

[13]  Bo Li,et al.  Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite. , 2008, Physical review letters.

[14]  David J. Bergman,et al.  The dielectric constant of a composite material—A problem in classical physics , 1978 .

[15]  Yuhang Chen,et al.  Topology optimization for negative permeability metamaterials using level-set algorithm , 2011 .

[16]  Qing Li,et al.  A level-set procedure for the design of electromagnetic metamaterials. , 2010, Optics express.

[17]  C. Caloz,et al.  CRLH metamaterial leaky-wave and resonant antennas , 2008, IEEE Antennas and Propagation Magazine.

[18]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[19]  David R. Smith,et al.  Homogenization of metamaterials by field averaging (invited paper) , 2006 .

[20]  Güllü Kızıltaş,et al.  Inverse synthesis of electromagnetic materials using homogenization based topology optimization , 2011 .

[21]  D. Smith,et al.  Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients , 2001, physics/0111203.

[22]  O.G. Vendik,et al.  Artificial double negative (DNG) media composed by two different dielectric sphere lattices embedded in a dielectric matrix , 2004, 34th European Microwave Conference, 2004..

[23]  Vladimir M. Shalaev,et al.  Superlens based on metal-dielectric composites , 2005 .

[24]  Lewei Li,et al.  Homogenization of 3-D Periodic Bianisotropic Metamaterials , 2006, IEEE Transactions on Microwave Theory and Techniques.

[25]  Z. Sipus,et al.  Waveguide miniaturization using uniaxial negative permeability metamaterial , 2005, IEEE Transactions on Antennas and Propagation.

[26]  Hossein Mosallaei,et al.  Physical configuration and performance modeling of all-dielectric metamaterials , 2008 .

[27]  O. Sigmund Materials with prescribed constitutive parameters: An inverse homogenization problem , 1994 .

[28]  Willie J Padilla,et al.  Composite medium with simultaneously negative permeability and permittivity , 2000, Physical review letters.

[29]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[30]  R. Rockafellar The multiplier method of Hestenes and Powell applied to convex programming , 1973 .

[31]  Shiwei Zhou,et al.  Design of 3-D Periodic Metamaterials for Electromagnetic Properties , 2010, IEEE Transactions on Microwave Theory and Techniques.

[32]  S. Yamasaki,et al.  Heaviside projection based topology optimization by a PDE-filtered scalar function , 2011 .

[33]  Takayuki Yamada,et al.  A Level Set-Based Topology Optimization Method for Maximizing Thermal Diffusivity in Problems Including Design-Dependent Effects , 2011 .

[34]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[35]  P Y Chen,et al.  Synthesis design of artificial magnetic metamaterials using a genetic algorithm. , 2008, Optics express.

[36]  Wenshan Cai,et al.  Designs for optical cloaking with high-order transformations. , 2008, Optics express.

[37]  Ole Sigmund,et al.  On projection methods, convergence and robust formulations in topology optimization , 2011, Structural and Multidisciplinary Optimization.

[38]  Z. Hashin Analysis of Composite Materials—A Survey , 1983 .

[39]  M. Wegener,et al.  Negative Refractive Index at Optical Wavelengths , 2007, Science.

[40]  N. Kikuchi,et al.  Solutions to shape and topology eigenvalue optimization problems using a homogenization method , 1992 .

[41]  M. Lanagan,et al.  FDTD study of resonance Processes in metamaterials , 2005, IEEE Transactions on Microwave Theory and Techniques.

[42]  E. S. Palencia Non-Homogeneous Media and Vibration Theory , 1980 .

[43]  David R. Smith,et al.  Electromagnetic parameter retrieval from inhomogeneous metamaterials. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  Jin Au Kong,et al.  Robust method to retrieve the constitutive effective parameters of metamaterials. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  James K. Guest,et al.  Topology optimization with multiple phase projection , 2009 .

[46]  Rolf Schuhmann,et al.  Extraction of effective metamaterial parameters by parameter fitting of dispersive models , 2007 .

[47]  Ji Zhou,et al.  Mie resonance-based dielectric metamaterials , 2009 .

[48]  O. Sigmund,et al.  INVERSE DESIGN OF DIELECTRIC MATERIALS BY TOPOLOGY OPTIMIZATION , 2012 .

[49]  C. Holloway,et al.  A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix , 2003 .

[50]  Wei Wang,et al.  An effective method for designing new structural left-handed material based on topology optimisation , 2011 .

[51]  Lixin Ran,et al.  Experimental observation of left-handed behavior in an array of standard dielectric resonators. , 2007, Physical review letters.

[52]  G. Allaire,et al.  Structural optimization using sensitivity analysis and a level-set method , 2004 .

[53]  M. Bendsøe,et al.  Generating optimal topologies in structural design using a homogenization method , 1988 .

[54]  Seokho Yun,et al.  Synthesizing low loss negative index metamaterial stacks for the mid-infrared using genetic algorithms. , 2009, Optics express.

[55]  N. Michishita,et al.  Dielectric-Resonator-Based Composite Right/Left-Handed Transmission Lines and Their Application to Leaky Wave Antenna , 2008, IEEE Transactions on Microwave Theory and Techniques.

[56]  Stewart,et al.  Extremely low frequency plasmons in metallic mesostructures. , 1996, Physical review letters.

[57]  M. Wang,et al.  Piecewise constant level set method for structural topology optimization , 2009 .

[58]  M. Bendsøe Optimal shape design as a material distribution problem , 1989 .

[59]  Jakob S. Jensen,et al.  Topology optimization of photonic crystal structures: a high-bandwidth low-loss T-junction waveguide , 2005 .

[60]  O. Sigmund Morphology-based black and white filters for topology optimization , 2007 .

[61]  Jianming Jin,et al.  Finite Element Analysis of Antennas and Arrays , 2008 .

[62]  Tsuyoshi Nomura,et al.  Topology optimization of grating couplers for the efficient excitation of surface plasmons , 2010 .

[63]  Shengli Xu,et al.  Volume preserving nonlinear density filter based on heaviside functions , 2010 .

[64]  Didier Lippens,et al.  An all-dielectric route for terahertz cloaking. , 2008, Optics express.

[65]  V. Veselago The Electrodynamics of Substances with Simultaneously Negative Values of ∊ and μ , 1968 .