Facile fabrication of UV photodetectors based on ZnO nanorod networks across trenched electrodes

Using a low temperature hydrothermal synthesis method, ZnO nanorod networks have been directly grown across trenched Au microelectrodes arrays, which were modified with a layer of ZnO seeds. The characteristics of the current–voltage (I–V) and the photoresponse were obtained both in the dark and under ultraviolet illumination. The bridged nanorod network demonstrated a highly sensitive response to UV illumination in atmosphere at room temperature. It can be useful for nanoscale optoelectronic applications, serving as chemical sensors, biological sensors, and switching devices.

[1]  Bruce E. Gnade,et al.  Mechanisms behind green photoluminescence in ZnO phosphor powders , 1996 .

[2]  Sangtae Kim,et al.  Photoresponses of ZnO nanobridge devices fabricated using a single-step thermal evaporation method , 2007 .

[3]  Y. Ikuhara,et al.  Current–Voltage Characteristics of Cobalt‐Doped Inversion Boundaries in Zinc Oxide Bicrystals , 2003 .

[4]  Jinhui Song,et al.  Nanowire Piezoelectric Nanogenerators on Plastic Substrates as Flexible Power Sources for Nanodevices , 2007 .

[5]  Peidong Yang,et al.  General route to vertical ZnO nanowire arrays using textured ZnO seeds. , 2005, Nano letters.

[6]  Chuanwei Cheng,et al.  Fabricating ZnO nanorods sensor for chemical gas detection at room temperature. , 2007, Journal of nanoscience and nanotechnology.

[7]  Changhong Liu,et al.  High‐Density, Ordered Ultraviolet Light‐Emitting ZnO Nanowire Arrays , 2003 .

[8]  S. R. Kurtz,et al.  Electroluminescence in ZnO varistors: Evidence for hole contributions to the breakdown mechanism , 1985 .

[9]  L. Vayssieres Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions , 2003 .

[10]  Y. G. Wang,et al.  Adsorption and desorption of oxygen probed from ZnO nanowire films by photocurrent measurements , 2005 .

[11]  Peidong Yang,et al.  Nanowire ultraviolet photodetectors and optical switches , 2002 .

[12]  X. G. Zheng,et al.  Photoconductive ultraviolet detectors based on ZnO films , 2006 .

[13]  G. Ceder,et al.  First-principles study of native point defects in ZnO , 2000 .

[14]  Pu-Xian Gao,et al.  Bridged ZnO nanowires across trenched electrodes , 2007 .

[15]  J. Thong,et al.  Simple fabrication of a ZnO nanowire photodetector with a fast photoresponse time , 2006 .

[16]  F. Ren,et al.  Low temperature (<100 °C) patterned growth of ZnO nanorod arrays on Si , 2007 .

[17]  Heon-Jin Choi,et al.  Controlled growth of ZnO nanowires and their optical properties , 2002 .

[18]  Huifang Xu,et al.  Complex and oriented ZnO nanostructures , 2003, Nature materials.

[19]  Sangsig Kim,et al.  Photoresponse of sol-gel-synthesized ZnO nanorods , 2004 .

[20]  Kelly P. Knutsen,et al.  Ultrafast Carrier Dynamics in Single ZnO Nanowire and Nanoribbon Lasers , 2004 .

[21]  Y. Ikuhara,et al.  Current-voltage characteristics across [0001] twist boundaries in zinc oxide bicrystals , 2002 .

[22]  Jin Suk Kim,et al.  Fabrication and electrical characteristics of high-performance ZnO nanorod field-effect transistors , 2004 .

[23]  R. Chang,et al.  Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition , 2004 .

[24]  C. H. Seager,et al.  The dc voltage dependence of semiconductor grain‐boundary resistance , 1979 .

[25]  Zhong Lin Wang,et al.  Multicolored ZnO Nanowire Architectures on Trenched Silicon Substrates , 2007 .

[26]  Zhiyong Fan,et al.  Photoluminescence and polarized photodetection of single ZnO nanowires , 2004 .

[27]  Gyu-Tae Kim,et al.  Photocurrent in ZnO nanowires grown from Au electrodes , 2004 .