Rigorous pattern-recognition methods for DNA sequences. Analysis of promoter sequences from Escherichia coli.

[1]  J. Jiricny,et al.  An enhancer-like sequence within the Xenopus U2 gene promoter facilitates the formation of stable transcription complexes , 1985, Nature.

[2]  L. Bossi,et al.  Conformational change in the DNA associated with an unusual promoter mutation in a tRNA operon of Salmonella , 1984, Cell.

[3]  H. Buc,et al.  Cyclic AMP receptor protein: role in transcription activation. , 1984, Science.

[4]  Hen-Ming Wu,et al.  The locus of sequence-directed and protein-induced DNA bending , 1984, Nature.

[5]  A. Travers,et al.  Conserved features of coordinately regulated E. coli promoters. , 1984, Nucleic acids research.

[6]  H. Zachau,et al.  Correct transcription of an immunoglobulin κ gene requires an upstream fragment containing conserved sequence elements , 1984, Nature.

[7]  Robert Entriken,et al.  Escherichia coli promoter sequences predict in vitro RNA polymerase selectivity , 1984, Nucleic Acids Res..

[8]  R. Staden,et al.  Computer methods to locate signals in nucleic acid sequences , 1984, Nucleic Acids Res..

[9]  Douglas L. Brutlag,et al.  Rapid searches for complex patterns in biological molecules , 1984, Nucleic Acids Res..

[10]  M. Waterman,et al.  Pattern recognition in several sequences: consensus and alignment. , 1984, Bulletin of mathematical biology.

[11]  A. A. Eddy,et al.  Note added in proof: Mechanisms of solute transport in selected eukaryotic micro-organisms , 1982 .

[12]  H. Buc,et al.  On the different binding affinities of CRP at the lac, gal and malT promoter regions. , 1983, Nucleic acids research.

[13]  A. Lamond,et al.  RNA polymerase interactions with the upstream region of the E. coli tyrT promoter , 1983, Cell.

[14]  M Ikehara,et al.  Essential structure of E. coli promoter: effect of spacer length between the two consensus sequences on promoter function. , 1983, Nucleic acids research.

[15]  R. Dickerson,et al.  Base sequence and helix structure variation in B and A DNA. , 1983, Journal of molecular biology.

[16]  D. K. Hawley,et al.  Compilation and analysis of Escherichia coli promoter DNA sequences. , 1983, Nucleic acids research.

[17]  M S Waterman,et al.  Regulatory pattern identification in nucleic acid sequences. , 1983, Nucleic acids research.

[18]  D. K. Hawley,et al.  DNA determinants of promoter selectivity in Escherichia coli. , 1983, Cold Spring Harbor symposia on quantitative biology.

[19]  J. K. Walker,et al.  DNA secondary structures: helices, wrinkles, and junctions. , 1983, Cold Spring Harbor symposia on quantitative biology.

[20]  P. Youderian,et al.  Sequence determinants of promoter activity , 1982, Cell.

[21]  W Mandecki,et al.  A lac promoter with a changed distance between -10 and -35 regions. , 1982, Nucleic acids research.

[22]  Cary Queen,et al.  Improvements to a program for DNA analysis: a procedure to find homologies among many sequences , 1982, Nucleic Acids Res..

[23]  H. Noller,et al.  Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. , 1981, Journal of molecular biology.

[24]  Walter Gilbert,et al.  E. coli RNA polymerase interacts homologously with two different promoters , 1980, Cell.

[25]  C. J. Alden,et al.  Bent DNA: visualization of a base-paired and stacked A-B conformational junction. , 1979, The Journal of biological chemistry.

[26]  D Court,et al.  Regulatory sequences involved in the promotion and termination of RNA transcription. , 1979, Annual review of genetics.

[27]  J. M. Oshorn Proc. Nat. Acad. Sei , 1978 .

[28]  D. E. Whiteman,et al.  Estimation of probability densities by empirical density functions , 1978 .

[29]  D. Pribnow,et al.  Bacteriophage T7 early promoters: nucleotide sequences of two RNA polymerase binding sites. , 1975, Journal of molecular biology.

[30]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .