Approximating the bottleneck plane perfect matching of a point set

[1]  Chuan Yi Tang,et al.  Solving the Euclidean bottleneck matching problem byk-relative neighborhood graphs , 2005, Algorithmica.

[2]  Alon Itai,et al.  Geometry Helps in Bottleneck Matching and Related Problems , 2001, Algorithmica.

[3]  Saladi Rahul,et al.  A Bottleneck Matching Problem with Edge-Crossing Constraints , 2015, Int. J. Comput. Geom. Appl..

[4]  Matthew J. Katz,et al.  Computing Euclidean bottleneck matchings in higher dimensions , 2000, Inf. Process. Lett..

[5]  Matthew J. Katz,et al.  Bottleneck non-crossing matching in the plane , 2012, Comput. Geom..

[6]  Jean Cardinal,et al.  Non-crossing matchings of points with geometric objects , 2013, Comput. Geom..

[7]  Pravin M. Vaidya,et al.  Geometry helps in matching , 1989, STOC '88.

[8]  J. Edmonds Paths, Trees, and Flowers , 1965, Canadian Journal of Mathematics - Journal Canadien de Mathematiques.

[9]  Clyde L. Monma,et al.  Transitions in geometric minimum spanning trees , 1991, SCG '91.

[10]  Kasturi R. Varadarajan A divide-and-conquer algorithm for min-cost perfect matching in the plane , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[11]  Thomas Lengauer,et al.  Combinatorial algorithms for integrated circuit layout , 1990, Applicable theory in computer science.

[12]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .