Optical response of a single gold nanoparticle

Optical detection and spectroscopy of single gold nanoparticles using the spatial-modulation spectroscopy technique is described, focusing on the connection between the nanoparticle and environment parameters with the measured linear optical extinction spectrum. Characterisation of the size, shape and orientation on the substrate of a nanoparticle through quantitative determination of its optical extinction cross-section spectrum is illustrated in the case of gold nanospheres and nanorods. Extension of this technique to ultrafast nonlinear spectroscopy of a single gold nanoparticle is also discussed.

[1]  V. Sandoghdar,et al.  Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy. , 2004, Physical review letters.

[2]  O. Muskens,et al.  Optical response of a single noble metal nanoparticle , 2006 .

[3]  A. Stentz,et al.  Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm , 2000 .

[4]  Hideki T. Miyazaki,et al.  Resonant light scattering from individual Ag nanoparticles and particle pairs , 2002 .

[5]  M. Pileni,et al.  Collections of copper nanocrystals characterized by different sizes and shapes: Optical response of these nanoobjects , 2004 .

[6]  M. Broyer,et al.  Direct measurement of the single-metal-cluster optical absorption. , 2004, Physical review letters.

[7]  Hristina Petrova,et al.  Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study. , 2006, Physical chemistry chemical physics : PCCP.

[8]  M. Broyer,et al.  Optical extinction spectroscopy of single silver nanoparticles , 2007 .

[9]  M. Pileni,et al.  Optical properties of gold nanorods: DDA simulations supported by experiments. , 2005, The journal of physical chemistry. B.

[10]  R. Tommasi,et al.  High repetition rate nonlinear generation of synchronized frequency tunable femtosecond pulses , 1997 .

[11]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[12]  T. Klar,et al.  Biomolecular Recognition Based on Single Gold Nanoparticle Light Scattering , 2003 .

[13]  Keiji Sasaki,et al.  Time-resolved Laser Scattering Spectroscopy of a Single Metallic Nanoparticle , 2001 .

[14]  V. Sandoghdar,et al.  Tomographic Plasmon Spectroscopy of a Single Gold Nanoparticle , 2004 .

[15]  A. Mikhailovsky,et al.  Broadband near-field interference spectroscopy of metal nanoparticles using a femtosecond white-light continuum. , 2003, Optics letters.

[16]  T. Itoh,et al.  Femtosecond light scattering spectroscopy of single gold nanoparticles , 2001 .

[17]  Ultrafast resonant optical scattering from single gold nanorods: Large nonlinearities and plasmon saturation , 2006 .

[18]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[19]  M. Broyer,et al.  Correlation between the Extinction Spectrum of a Single Metal Nanoparticle and Its Electron Microscopy Image , 2008 .

[20]  Norris,et al.  Photoluminescence Spectroscopy of Single CdSe Nanocrystallite Quantum Dots. , 1996, Physical review letters.

[21]  Thomas A. Klar,et al.  Surface-Plasmon Resonances in Single Metallic Nanoparticles , 1998 .

[22]  Al-Sayed A. Al-Sherbini Thermal instability of gold nanorods in micellar solution of water/glycerol mixtures , 2004 .

[23]  C. Voisin,et al.  Time-resolved investigation of the vibrational dynamics of metal nanoparticles , 2000 .

[24]  L. Novotný,et al.  Simultaneous Fluorescence and Raman Scattering from Single Carbon Nanotubes , 2003, Science.

[25]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[26]  M. Broyer,et al.  Ultrafast electron-electron scattering and energy exchanges in noble-metal nanoparticles , 2004 .

[27]  Adam D. McFarland,et al.  Single Silver Nanoparticles as Real-Time Optical Sensors with Zeptomole Sensitivity , 2003 .

[28]  Michael Vollmer,et al.  Optical properties of metal clusters , 1995 .

[29]  C. Flytzanis,et al.  Electron dynamics and surface plasmon resonance nonlinearities in metal nanoparticles , 2000 .

[30]  Louis E. Brus,et al.  Surface Enhanced Raman Spectroscopy of Individual Rhodamine 6G Molecules on Large Ag Nanocrystals , 1999 .

[31]  O. Muskens,et al.  Single metal nanoparticle absorption spectroscopy and optical characterization , 2006 .

[32]  Natalia Del Fatti,et al.  Femtosecond response of a single metal nanoparticle. , 2006, Nano letters.

[33]  Luis M Liz-Marzán,et al.  Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[34]  Brahim Lounis,et al.  Photothermal Imaging of Nanometer-Sized Metal Particles Among Scatterers , 2002, Science.

[35]  David R. Smith,et al.  Shape effects in plasmon resonance of individual colloidal silver nanoparticles , 2002 .

[36]  Carsten Sönnichsen,et al.  Plasmon resonances in large noble-metal clusters , 2002 .

[37]  David R. Smith,et al.  Local Refractive Index Dependence of Plasmon Resonance Spectra from Individual Nanoparticles , 2003 .

[38]  M. Maillard,et al.  Electron-phonon scattering in metal clusters. , 2003, Physical review letters.

[39]  Garnett W. Bryant,et al.  Modeling illumination-mode near-field optical microscopy of Au nanoparticles , 2001 .

[40]  François Hache,et al.  Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects , 1986 .

[41]  Christophe Voisin,et al.  Ultrafast Electron Dynamics and Optical Nonlinearities in Metal Nanoparticles , 2001 .

[42]  M. Faraday X. The Bakerian Lecture. —Experimental relations of gold (and other metals) to light , 1857, Philosophical Transactions of the Royal Society of London.

[43]  Hiromi Okamoto,et al.  Imaging of surface plasmon and ultrafast dynamics in gold nanorods by near-field microscopy , 2004 .

[44]  Paul Mulvaney,et al.  Electric‐Field‐Directed Growth of Gold Nanorods in Aqueous Surfactant Solutions , 2004 .

[45]  Michel Orrit,et al.  Detection of acoustic oscillations of single gold nanospheres by time-resolved interferometry. , 2005, Physical review letters.

[46]  W. Moerner,et al.  Illuminating single molecules in condensed matter. , 1999, Science.

[47]  J. Eastoe,et al.  Recent advances in nanoparticle synthesis with reversed micelles. , 2006, Advances in colloid and interface science.

[48]  Paul Mulvaney,et al.  Drastic reduction of plasmon damping in gold nanorods. , 2002 .

[49]  M. Pileni Nanocrystals: fabrication, organization and collective properties , 2003 .