Oxide Semiconductors Nano-Crystalline Tubular and Porous Systems

[1]  Craig A Grimes,et al.  Vertically oriented Ti-Fe-O nanotube array films: toward a useful material architecture for solar spectrum water photoelectrolysis. , 2007, Nano letters.

[2]  Craig A. Grimes,et al.  A new benchmark for TiO2 nanotube array growth by anodization , 2007 .

[3]  Craig A. Grimes,et al.  Synthesis and application of highly ordered arrays of TiO2 nanotubes , 2007 .

[4]  Craig A. Grimes,et al.  Application of finite-difference time domain to dye-sensitized solar cells: The effect of nanotube-array negative electrode dimensions on light absorption , 2007 .

[5]  C. Grimes,et al.  Cation Effect on the Electrochemical Formation of Very High Aspect Ratio TiO2 Nanotube Arrays in Formamide−Water Mixtures , 2007 .

[6]  Kai Zhu,et al.  Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. , 2007, Nano letters.

[7]  B. Elidrissi,et al.  Physico-chemical, optical and electrochemical properties of iron oxide thin films prepared by spray pyrolysis , 2006 .

[8]  I. E. Grey,et al.  Efficiency of solar water splitting using semiconductor electrodes , 2006 .

[9]  K. Rajeshwar,et al.  Nanoporous TiO2 and WO3 films by anodization of titanium and tungsten substrates: influence of process variables on morphology and photoelectrochemical response. , 2006, The journal of physical chemistry. B.

[10]  W. Ueda,et al.  Shape-controlled synthesis of ZrO2, Al2O3, and SiO2 nanotubes using carbon nanofibers as templates , 2006 .

[11]  Wenzhong Wang,et al.  Fabrication of ordered SnO2 nanotube arrays via a template route , 2006 .

[12]  Craig A. Grimes,et al.  A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications , 2006 .

[13]  C. Grimes,et al.  Initial Studies on the Hydrogen Gas Sensing Properties of Highly-Ordered High Aspect Ratio TiO 2 Nanotube-Arrays 20 μ m to 222 μ m in Length , 2006 .

[14]  Craig A. Grimes,et al.  Anodic Growth of Highly Ordered TiO2 Nanotube Arrays to 134 μm in Length , 2006 .

[15]  Yuqiu Wang,et al.  Surfactant-assisted synthesis of alpha-Fe2O3 nanotubes and nanorods with shape-dependent magnetic properties. , 2006, The journal of physical chemistry. B.

[16]  C. Grimes,et al.  An electrochemical strategy to incorporate nitrogen in nanostructured TiO2 thin films: modification of bandgap and photoelectrochemical properties , 2006 .

[17]  Craig A. Grimes,et al.  Enhanced photoelectrochemical-response in highly ordered TiO2 nanotube-arrays anodized in boric acid containing electrolyte , 2006 .

[18]  Craig A. Grimes,et al.  Backside illuminated dye-sensitized solar cells based on titania nanotube array electrodes , 2006 .

[19]  K. Hanabusa,et al.  Preparation of Metal Oxide Nanotubes Using Gelators as Structure‐Directing Agents , 2006 .

[20]  Craig A. Grimes,et al.  Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays , 2006 .

[21]  Craig A Grimes,et al.  Use of highly-ordered TiO(2) nanotube arrays in dye-sensitized solar cells. , 2006, Nano letters.

[22]  C. Grimes,et al.  Electrochemically synthesized CdS nanoparticle-modified TiO2 nanotube-array photoelectrodes : Preparation, characterization, and application to photoelectrochemical cells , 2006 .

[23]  Craig A. Grimes,et al.  Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes , 2006 .

[24]  Buxing Han,et al.  A Highly Efficient Chemical Sensor Material for H2S: α‐Fe2O3 Nanotubes Fabricated Using Carbon Nanotube Templates , 2005 .

[25]  Jan M. Macak,et al.  Smooth anodic TiO2 nanotubes. , 2005, Angewandte Chemie.

[26]  P. Wu,et al.  Effects of nitrogen doping on optical properties of TiO2 thin films , 2005 .

[27]  K. G. Ong,et al.  Numerical simulation of light propagation through highly-ordered titania nanotube arrays: dimension optimization for improved photoabsorption. , 2005, Journal of nanoscience and nanotechnology.

[28]  C. Grimes,et al.  A study on the spectral photoresponse and photoelectrochemical properties of flame-annealed titania nanotube-arrays , 2005 .

[29]  Craig A. Grimes,et al.  Transparent Highly Ordered TiO2 Nanotube Arrays via Anodization of Titanium Thin Films , 2005 .

[30]  Craig A Grimes,et al.  Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte. , 2005, The journal of physical chemistry. B.

[31]  Chunhua Yan,et al.  Single-crystalline iron oxide nanotubes. , 2005, Angewandte Chemie.

[32]  Yong Wang,et al.  Polycrystalline SnO2 Nanotubes Prepared via Infiltration Casting of Nanocrystallites and Their Electrochemical Application , 2005 .

[33]  Jung-Yup Lee,et al.  Electronic properties of N- and C-doped TiO2 , 2005 .

[34]  Patrik Schmuki,et al.  High-aspect-ratio TiO2 nanotubes by anodization of titanium. , 2005, Angewandte Chemie.

[35]  T. Ohshima,et al.  Preparation of nitrogen-doped titanium oxide thin film using a PLD method as parameters of target material and nitrogen concentration ratio in nitrogen/oxygen gas mixture , 2005 .

[36]  Jun Chen,et al.  α‐Fe2O3 Nanotubes in Gas Sensor and Lithium‐Ion Battery Applications , 2005 .

[37]  Yan Li,et al.  Fabrication of ZnO nanorods and nanotubes in aqueous solutions , 2005 .

[38]  Daihua Zhang,et al.  Single crystalline magnetite nanotubes. , 2005, Journal of the American Chemical Society.

[39]  James L. Gole,et al.  Formation of Oxynitride as the Photocatalytic Enhancing Site in Nitrogen‐Doped Titania Nanocatalysts: Comparison to a Commercial Nanopowder , 2005 .

[40]  Craig A. Grimes,et al.  The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation , 2005 .

[41]  Craig A Grimes,et al.  Water-photolysis properties of micron-length highly-ordered titania nanotube-arrays. , 2005, Journal of nanoscience and nanotechnology.

[42]  Craig A Grimes,et al.  Enhanced photocleavage of water using titania nanotube arrays. , 2005, Nano letters.

[43]  S. R. Biaggio,et al.  XPS characterization of anodic titanium oxide films grown in phosphate buffer solutions , 2004 .

[44]  D. Bavykin,et al.  The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes , 2004 .

[45]  Si-hoon Lee,et al.  Fabrication of TiO2 Tubules by Template Synthesis and Hydrolysis with Water Vapor , 2004 .

[46]  Craig A. Grimes,et al.  Photoelectrochemical properties of titania nanotubes , 2004 .

[47]  H. Teng,et al.  Regulation of the Physical Characteristics of Titania Nanotube Aggregates Synthesized from Hydrothermal Treatment , 2004 .

[48]  C. Grimes,et al.  A titania nanotube-array room-temperature sensor for selective detection of hydrogen at low concentrations. , 2004, Journal of nanoscience and nanotechnology.

[49]  A. Rakhshani,et al.  Photocurrent spectroscopy of solution-grown CdS films annealed in CdCl2 vapour , 2004 .

[50]  J. Augustynski,et al.  Spectral Photoresponses of Carbon-Doped TiO2 Film Electrodes , 2004 .

[51]  M. Kiuchi,et al.  Structural and optical properties of titanium dioxide films deposited by reactive magnetron sputtering in pure oxygen plasma , 2004 .

[52]  Craig A. Grimes,et al.  A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination , 2004 .

[53]  Craig A. Grimes,et al.  A Self-Cleaning, Room-Temperature Titania-Nanotube Hydrogen Gas Sensor , 2003 .

[54]  Craig A. Grimes,et al.  Fabrication of tapered, conical-shaped titania nanotubes , 2003 .

[55]  Huifang Xu,et al.  Large oriented arrays and continuous films of TiO(2)-based nanotubes. , 2003, Journal of the American Chemical Society.

[56]  M. Anpo,et al.  Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2 catalysts: Fe ion-implanted TiO2 , 2003 .

[57]  A. Govindaraj,et al.  Hydrogel route to nanotubes of metal oxides and sulfates , 2003 .

[58]  Craig A. Grimes,et al.  Hydrogen sensing using titania nanotubes , 2003 .

[59]  S. Yoshikawa,et al.  Formation of Titania Nanotubes and Applications for Dye-Sensitized Solar Cells , 2003 .

[60]  K. Wada,et al.  Highly Porous (TiO2-SiO2-TeO2)/Al2O3/TiO2 Composite Nanostructures on Glass with Enhanced Photocatalysis Fabricated by Anodization and Sol-Gel Process. , 2003, The journal of physical chemistry. B.

[61]  H. Rubinsztein-Dunlop,et al.  Mesostructured dye-doped titanium dioxide for micro-optoelectronic applications. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[62]  Yuka Watanabe,et al.  Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO2-xNx Powders , 2003 .

[63]  Ning Wang,et al.  Formation mechanism of TiO2 nanotubes , 2003 .

[64]  Craig A. Grimes,et al.  Crystallization and high-temperature structural stability of titanium oxide nanotube arrays , 2003 .

[65]  K. Asai,et al.  Analysis of electronic structures of 3d transition metal-doped TiO 2 based on band calculations , 2002 .

[66]  W. Ingler,et al.  Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2 , 2002, Science.

[67]  Qing Chen,et al.  Trititanate nanotubes made via a single alkali treatment , 2002 .

[68]  L. Anicai,et al.  Structural study of anodic films formed on aluminum in nitric acid electrolyte , 2002 .

[69]  M. Shirai,et al.  Application of Titania Nanotubes to a Dye-sensitized Solar Cell , 2002 .

[70]  K. Hanabusa,et al.  Preparation of helical transition-metal oxide tubes using organogelators as structure-directing agents. , 2002, Journal of the American Chemical Society.

[71]  B. Su,et al.  Hierarchical interlinked structure of titanium oxide nanofibers. , 2002, Chemical communications.

[72]  K. Izutsu Electrochemistry in Nonaqueous Solutions , 2002 .

[73]  S. Shinkai,et al.  Creation of Novel Helical Ribbon and Double-Layered Nanotube TiO2 Structures Using an Organogel Template , 2002 .

[74]  S. Tamaru,et al.  Sol–Gel Transcription of Sugar-Appended Porphyrin Assemblies into Fibrous Silica: Unimolecular Stacks versus Helical Bundles as Templates , 2002 .

[75]  Shaomin Liu,et al.  SYNTHESIS OF SINGLE-CRYSTALLINE TIO2 NANOTUBES , 2002 .

[76]  Jing Sun,et al.  Preparation of Long TiO2 Nanotubes from Ultrafine Rutile Nanocrystals , 2002 .

[77]  P. Kamat,et al.  Interparticle electron transfer between size-quantized CdS and TiO2 semiconductor nanoclustersDedicated to Professor Frank Wilkinson on the occasion of his retirement. , 2002 .

[78]  T. Yamaki,et al.  Formation of TiO2−xFx compounds in fluorine-implanted TiO2 , 2002 .

[79]  Vladimir M. Aroutiounian,et al.  Investigation of ceramic Fe2O3â©Ta⪠photoelectrodes for solar energy photoelectrochemical converters , 2002 .

[80]  Craig A. Grimes,et al.  Titanium oxide nanotube arrays prepared by anodic oxidation , 2001 .

[81]  E. Samulski,et al.  Fabrication and characterization of nanotubular semiconductor oxides In2O3 and Ga2O3 , 2001 .

[82]  M. Moskovits,et al.  Highly regular anatase nanotubule arrays fabricated in porous anodic templates , 2001 .

[83]  Qing Chen,et al.  Preparation and structure analysis of titanium oxide nanotubes , 2001 .

[84]  L. Young,et al.  Non-thickness-limited growth of anodic oxide films on tantalum , 2001 .

[85]  R. Asahi,et al.  Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides , 2001, Science.

[86]  Hwan Kim,et al.  Preparation of nanotube-shaped TiO2 powder , 2001 .

[87]  R. Asahi,et al.  Band-Gap Narrowing of Titanium Dioxide by Nitrogen Doping , 2001 .

[88]  T Albrektsson,et al.  The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes. , 2001, Medical engineering & physics.

[89]  M. Grätzel Photoelectrochemical cells : Materials for clean energy , 2001 .

[90]  K. Inukai,et al.  Synthesis of single silica nanotubes in the presence of citric acid , 2001 .

[91]  S. Yoshikawa,et al.  Formation of Titania Nanotubes with High Photo-Catalytic Activity , 2000 .

[92]  A. Hagfeldt,et al.  Photoelectrochemical Studies of Oriented Nanorod Thin Films of Hematite , 2000 .

[93]  S. Shinkai,et al.  Preparation of TiO2 Hollow-Fibers Using Supramolecular Assemblies , 2000 .

[94]  S. Shinkai,et al.  Creation of Both Right-Handed and Left-Handed Silica Structures by Sol−Gel Transcription of Organogel Fibers Comprised of Chiral Diaminocyclohexane Derivatives , 2000 .

[95]  Edwin J. Heilweil,et al.  Electron Injection, Recombination, and Halide Oxidation Dynamics at Dye-Sensitized Metal Oxide Interfaces , 2000 .

[96]  K. Shimizu,et al.  Cellular porous anodic alumina grown in neutral organic electrolyte. I. Structure, composition, and properties of the films , 2000 .

[97]  D. Vanmaekelbergh,et al.  Recombination of Photogenerated Charge Carriers in Nanoporous Gallium Phosphide , 2000 .

[98]  James A. Anderson,et al.  Determination of the nature and reactivity of copper sites in Cu–TiO2 catalysts , 2000 .

[99]  D. Bahnemann,et al.  A novel preparation of iron-doped TiO2 nanoparticles with enhanced photocatalytic activity , 2000 .

[100]  M. Harada,et al.  Formation of Huge Length Silica Nanotubes by a Templating Mechanism in the Laurylamine/Tetraethoxysilane System , 1999 .

[101]  Marc Aucouturier,et al.  Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy , 1999 .

[102]  S. Cai,et al.  The photoelectrochemistry of transition metal-ion-doped TiO2 nanocrystalline electrodes and higher solar cell conversion efficiency based on Zn2+-doped TiO2 electrode , 1999 .

[103]  H. Yamashita,et al.  Characterization of metal ion-implanted titanium oxide photocatalysts operating under visible light irradiation. , 1999, Journal of synchrotron radiation.

[104]  R BoerdeF.,et al.  Electronic properties of U2Cu9Al , 1999 .

[105]  A. Fujishima,et al.  Studies of Surface Wettability Conversion on TiO2 Single-Crystal Surfaces , 1999 .

[106]  D. Vanmaekelbergh,et al.  DRIVING FORCE FOR ELECTRON TRANSPORT IN POROUS NANOSTRUCTURED PHOTOELECTRODES , 1999 .

[107]  Kazuhiko Inoue,et al.  EVIDENCE FOR THE IMPORTANCE OF A CATIONIC CHARGE IN THE FORMATION OF HOLLOW FIBER SILICA FROM AN ORGANIC GEL SYSTEM , 1999 .

[108]  H. Imai,et al.  Direct preparation of anatase TiO2 nanotubes in porous alumina membranes , 1999 .

[109]  P. Lessner,et al.  THE NON-THICKNESS-LIMITED GROWTH OF ANODIC OXIDE FILMS ON VALVE METALS , 1999 .

[110]  Norio Sato,et al.  Electrochemistry at Metal and Semiconductor Electrodes , 1998 .

[111]  H. Tada,et al.  A Promoting Effect of NH4F Addition on the Photocatalytic Activity of Sol-Gel TiO2 Films , 1998 .

[112]  Koichi Niihara,et al.  Formation of titanium oxide nanotube , 1998 .

[113]  Fabiana C. Gennari,et al.  Kinetics of the anatase–rutile transformation in TiO2 in the presence of Fe2O3 , 1998 .

[114]  N. Sato CHAPTER 10 – SEMICONDUCTOR PHOTOELECTRODES , 1998 .

[115]  G. Thompson,et al.  Porous anodic alumina: fabrication, characterization and applications , 1997 .

[116]  Peter K. Dorhout,et al.  Sol−Gel Template Synthesis of Semiconductor Nanostructures , 1997 .

[117]  A. Govindaraj,et al.  Oxide nanotubes prepared using carbon nanotubes as templates , 1997 .

[118]  M. Kundu,et al.  Synthesis and study of organically capped ultra small clusters of cadmium sulphide , 1997 .

[119]  P. Hoyer,et al.  Formation of a Titanium Dioxide Nanotube Array , 1996 .

[120]  D. Vanmaekelbergh,et al.  Greatly Enhanced Sub‐Bandgap Photocurrent in Porous GaP Photoanodes , 1996 .

[121]  Pandey Handbook of semiconductor electrodeposition , 1996 .

[122]  Dong Heon Lee,et al.  Metalorganic chemical vapor deposition of TiO2:N anatase thin film on Si substrate , 1995 .

[123]  Y. Matsui,et al.  The preparation of novel silica gel hollow tubes , 1995 .

[124]  P. Ajayan,et al.  Carbon nanotubes as removable templates for metal oxide nanocomposites and nanostructures , 1995, Nature.

[125]  J. Yates,et al.  Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results , 1995 .

[126]  Anders Hagfeldt,et al.  Light-Induced Redox Reactions in Nanocrystalline Systems , 1995 .

[127]  Wonyong Choi,et al.  The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics , 1994 .

[128]  Horst Weller,et al.  Quantum-Sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 Particles as Sensitizers for Various Nanoporous Wide-Bandgap Semiconductors , 1994 .

[129]  B. Hwang,et al.  Kinetic model of anodic oxidation of titanium in sulphuric acid , 1993 .

[130]  S. Mann,et al.  Template mineralization of self-assembled anisotropic lipid microstructures , 1993, Nature.

[131]  Xenophon E. Verykios,et al.  Effects of altervalent cation doping of titania on its performance as a photocatalyst for water cleavage , 1993 .

[132]  Harland G. Tompkins,et al.  Titanium nitride oxidation chemistry: An x‐ray photoelectron spectroscopy study , 1992 .

[133]  V. Parkhutik,et al.  Theoretical modelling of porous oxide growth on aluminium , 1992 .

[134]  N. Serpone,et al.  Photocatalysis: Fundamentals and Applications , 1989 .

[135]  J. Delplancke,et al.  Galvanostatic anodization of titanium—II. Reactions efficiencies and electrochemical behaviour model , 1988 .

[136]  M. Lübke,et al.  A particle size effect in the sensitization of TiO2 electrodes by a CdS deposit , 1986 .

[137]  D. Partlow,et al.  Formation of broad band antireflective coatings on fused silica for high power laser applications , 1985 .

[138]  M. Schiavello Photoelectrochemistry, Photocatalysis and Photoreactors , 1985 .

[139]  R. D. Wright,et al.  Sensitisation of semiconducting electrodes with ruthenium-based dyes , 1980 .

[140]  S. N. Subbarao,et al.  Electrical and optical properties of the system TiO2-xFx , 1979 .

[141]  J. Kennedy,et al.  Photooxidation of Water at α ‐ Fe2 O 3 Electrodes , 1978 .

[142]  J. Augustynski,et al.  XPS study of the interactions between aluminium metal and nitrate ions , 1976 .

[143]  J. Gasiot,et al.  A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film , 1976 .

[144]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[145]  J. Tauc,et al.  Absorption edge and internal electric fields in amorphous semiconductors , 1970 .

[146]  D. W. Tanner,et al.  The electrical properties of alpha ferric oxide—II.: Ferric oxide of high purity , 1963 .

[147]  G. M. Krembs Residual Tritiated Water in Anodized Tantalum Films , 1963 .

[148]  F. Morin Electrical Properties of a-Fe2O3 , 1954 .