A programmable dark-field detector for imaging two-dimensional materials in the scanning electron microscope

Unit cell orientation information is encoded in electron diffraction patterns of crystalline materials. Traditional transmission electron detectors implemented in the scanning electron microscope are highly symmetric and are insensitive to in-plane unit cell orientation information. Herein we detail the implementation of a transmission electron detector that utilizes a digital micromirror array to select anisotropic portions of a diffraction pattern for imaging purposes. We demonstrate that this detector can be used to map the in-plane orientation of grains in two-dimensional materials. The described detector has the potential to replace and/or supplement conventional transmission electron detectors.

[1]  G. McMullan,et al.  Direct imaging detectors for electron microscopy , 2018 .

[2]  T. Everhart,et al.  Wide-band detector for micro-microampere low-energy electron currents , 1960 .

[3]  R. Keller,et al.  Angularly-selective transmission imaging in a scanning electron microscope. , 2016, Ultramicroscopy.

[4]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[5]  M. T. Browne,et al.  Detectors for stem, and the measurement of their detective quantum efficiency☆ , 1982 .

[6]  M. Ishigami,et al.  Dark-field transmission electron microscopy and the Debye-Waller factor of graphene. , 2012, Physical review. B, Condensed matter and materials physics.

[7]  K Woods,et al.  Angularly sensitive detector for transmission Kikuchi diffraction in a scanning electron microscope , 2015, Photonics West - Optoelectronic Materials and Devices.

[8]  M. Dapor,et al.  Quantitative secondary electron imaging for work function extraction at atomic level and layer identification of graphene , 2016, Scientific Reports.

[9]  Alfred O. Hero,et al.  A Dictionary Approach to Electron Backscatter Diffraction Indexing* , 2015, Microscopy and Microanalysis.

[10]  J. Fundenberger,et al.  Orientation mapping by transmission-SEM with an on-axis detector. , 2016, Ultramicroscopy.

[11]  G. Hass,et al.  Optical Constants and Reflectance and Transmittance of Evaporated Aluminum in the Visible and Ultraviolet , 1961 .

[12]  W. Regan,et al.  Grain boundary mapping in polycrystalline graphene. , 2011, ACS nano.

[13]  J. Johns,et al.  Seed Crystal Homogeneity Controls Lateral and Vertical Heteroepitaxy of Monolayer MoS2 and WS2. , 2015, Journal of the American Chemical Society.

[14]  G. Lawes,et al.  Scanning Electron Microscopy and X-Ray Microanalysis , 1987 .

[15]  P. Echlin,et al.  Scanning Electron Microscopy , 2014 .

[16]  Pinshane Y. Huang,et al.  Twinning and twisting of tri- and bilayer graphene. , 2012, Nano letters.

[17]  R. Keller,et al.  Transmission imaging with a programmable detector in a scanning electron microscope. , 2019, Ultramicroscopy.

[18]  Pinshane Y. Huang,et al.  Grains and grain boundaries in single-layer graphene atomic patchwork quilts , 2010, Nature.

[19]  Dominique Drouin,et al.  Three-dimensional electron microscopy simulation with the CASINO Monte Carlo software. , 2011, Scanning.

[20]  J. M. Cowley,et al.  Innovative imaging and microdiffraction in stem , 1978 .

[21]  Ondrej Dyck,et al.  Mitigating e-beam-induced hydrocarbon deposition on graphene for atomic-scale scanning transmission electron microscopy studies , 2018 .

[22]  Manuel Guizar-Sicairos,et al.  Efficient subpixel image registration algorithms. , 2008, Optics letters.