Non-local spin correlation as a signature of Ising anyons trapped in vacancies of the Kitaev spin liquid

In the Kitaev chiral spin liquid, Ising anyons are realized as $Z_2$ fluxes binding Majorana zero modes, which, however, are thermal excitations with finite decay rates. On the other hand, a lattice vacancy traps a $Z_2$ flux even in the ground state, resulting in the stable realization of a Majorana zero mode in a vacancy. We demonstrate that spin-spin correlation functions between two vacancy sites exhibit long-range correlation arising from the fractionalized character of Majorana zero modes, in spite of the strong decay of bulk spin correlations. Remarkably, this non-local spin correlation does not decrease as the distance between two vacancy sites increases, signaling Majorana teleportation. Furthermore, we clarify that the non-local correlation can be detected electrically via the measurement of non-local conductance between two vacancy sites, which is straightforwardly utilized for the readout of Majorana qubits. These findings pave the way to the measurement-based quantum computation with Ising anyons trapped in vacancies of the Kitaev spin liquid.

[1]  A. Koga,et al.  Scattering phenomena for spin transport in a Kitaev spin liquid , 2022, Physical Review B.

[2]  A. Koga,et al.  Thermally enhanced Majorana-mediated spin transport in the Kitaev model , 2022, Physical Review B.

[3]  S. Fujimoto,et al.  Thermodynamic evidence for a field-angle-dependent Majorana gap in a Kitaev spin liquid , 2020, Nature Physics.

[4]  A. Koga,et al.  Role of Majorana fermions in spin transport of anisotropic Kitaev model , 2021, Physical Review B.

[5]  S. Fujimoto,et al.  Dissipationless Spin Current Generation in Kitaev's Chiral Spin Liquid , 2021, 2104.11115.

[6]  Y. Motome,et al.  Spin dynamics in the Kitaev model with disorder: Quantum Monte Carlo study of dynamical spin structure factor, magnetic susceptibility, and NMR relaxation rate , 2021, Physical Review B.

[7]  J. Knolle,et al.  Flat and correlated plasmon bands in graphene/α−RuCl3 heterostructures , 2021, Physical Review B.

[8]  N. Perkins,et al.  Disorder upon disorder: Localization effects in the Kitaev spin liquid , 2021, Annals of Physics.

[9]  Tatsuhiko N. Ikeda,et al.  Linear and nonlinear optical responses in Kitaev spin liquids , 2021, Physical Review Research.

[10]  R. Moessner,et al.  Vacancy-Induced Low-Energy Density of States in the Kitaev Spin Liquid , 2020, 2007.11637.

[11]  J. Knolle,et al.  Local probes for charge-neutral edge states in two-dimensional quantum magnets , 2020, 2007.07912.

[12]  A. Principi,et al.  Tunneling spectroscopy as a probe of fractionalization in two-dimensional magnetic heterostructures , 2020, Physical Review B.

[13]  Y. Motome,et al.  Thermodynamic and transport properties in disordered Kitaev models , 2020, 2004.07569.

[14]  A. Koga,et al.  Majorana-Mediated Spin Transport in Kitaev Quantum Spin Liquids. , 2019, Physical review letters.

[15]  Yong Baek Kim,et al.  Theory of Two-Dimensional Nonlinear Spectroscopy for the Kitaev Spin Liquid. , 2019, Physical review letters.

[16]  T. Arias,et al.  Ab Initio Mismatched Interface Theory of Graphene on α-RuCl_{3}: Doping and Magnetism. , 2019, Physical review letters.

[17]  Jun Yan,et al.  Evidence for charge transfer and proximate magnetism in graphene– α−RuCl3 heterostructures , 2018, Physical Review B.

[18]  F. Hassler,et al.  Dynamical structure factor in the non-Abelian phase of the Kitaev honeycomb model in the presence of quenched disorder , 2018, Physical Review B.

[19]  A. V. Lunkin,et al.  Perturbed Kitaev model: Excitation spectrum and long-ranged spin correlations , 2017, Journal of Physics and Chemistry of Solids.

[20]  M. Udagawa Vison-Majorana complex zero-energy resonance in the Kitaev spin liquid , 2018, Physical Review B.

[21]  Y. Motome,et al.  Majorana quantization and half-integer thermal quantum Hall effect in a Kitaev spin liquid , 2018, Nature.

[22]  Wei Chen,et al.  Response and phase transition of a Kitaev spin liquid in a local magnetic field , 2018, Physical Review B.

[23]  K. Krämer,et al.  Observation of two types of fractional excitation in the Kitaev honeycomb magnet , 2017, 1706.08455.

[24]  Sang-Youn Park,et al.  Majorana fermions in the Kitaev quantum spin system α-RuCl3 , 2017, Nature Physics.

[25]  J. Brink,et al.  Evidence for a Field-Induced Quantum Spin Liquid in α-RuCl_{3}. , 2017, Physical review letters.

[26]  K. Wohlfeld,et al.  Phase diagram and spin correlations of the Kitaev-Heisenberg model: Importance of quantum effects , 2016, 1608.05333.

[27]  L. Fu,et al.  Teleportation-based quantum information processing with Majorana zero modes , 2016, 1609.00950.

[28]  L. Balents,et al.  Low-Energy Spin Dynamics of the Honeycomb Spin Liquid Beyond the Kitaev Limit. , 2016, Physical review letters.

[29]  R. Moessner,et al.  Fermionic response from fractionalization in an insulating two-dimensional magnet , 2016, Nature Physics.

[30]  A. Banerjee,et al.  Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet. , 2015, Nature materials.

[31]  R. Moessner,et al.  Dynamics of fractionalization in quantum spin liquids , 2015, 1507.02865.

[32]  Young-June Kim,et al.  Scattering continuum and possible fractionalized excitations in α-RuCl(3). , 2015, Physical review letters.

[33]  R. Moessner,et al.  Raman scattering signatures of Kitaev spin liquids in A(2)IrO(3) iridates with A=Na or Li. , 2014, Physical review letters.

[34]  R. Moessner,et al.  Doping a topological quantum spin liquid: Slow holes in the Kitaev honeycomb model , 2014, 1403.3377.

[35]  R. Moessner,et al.  Dynamics of a Two-Dimensional Quantum Spin Liquid: Signatures of Emergent Majorana Fermions and Fluxes , 2013, 1308.4336.

[36]  R. Shankar,et al.  Stable algebraic spin liquid in a Hubbard model. , 2012, Physical review letters.

[37]  A. Lakshminarayan,et al.  Localized zero-energy modes in the Kitaev model with vacancy disorder , 2011, 1106.2385.

[38]  R. Moessner,et al.  Site dilution in the Kitaev honeycomb model , 2011, 1106.0732.

[39]  D. Loss,et al.  Physical solutions of the Kitaev honeycomb model , 2011, 1105.4573.

[40]  P. Horsch,et al.  Effects of spin vacancies on magnetic properties of the Kitaev-Heisenberg model , 2011, 1104.4707.

[41]  M. V. Feigel’man,et al.  Power-law spin correlations in a perturbed spin model on a honeycomb lattice. , 2011, Physical review letters.

[42]  G. Jackeli,et al.  Kitaev-Heisenberg model on a honeycomb lattice: possible exotic phases in iridium oxides A2IrO3. , 2010, Physical review letters.

[43]  R. Moessner,et al.  Disorder in a quantum spin liquid: flux binding and local moment formation. , 2010, Physical review letters.

[44]  Liang Fu,et al.  Electron teleportation via Majorana bound states in a mesoscopic superconductor. , 2009, Physical review letters.

[45]  G. Jackeli,et al.  Mott insulators in the strong spin-orbit coupling limit: from Heisenberg to a quantum compass and Kitaev models. , 2008, Physical review letters.

[46]  M. Freedman,et al.  Measurement-only topological quantum computation. , 2008, Physical review letters.

[47]  S. Simon,et al.  Non-Abelian Anyons and Topological Quantum Computation , 2007, 0707.1889.

[48]  R. Shankar,et al.  Exact results for spin dynamics and fractionalization in the Kitaev Model. , 2006, Physical review letters.

[49]  Alexei Kitaev,et al.  Anyons in an exactly solved model and beyond , 2005, cond-mat/0506438.

[50]  A. Kitaev,et al.  Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[51]  X. Wen Quantum orders and symmetric spin liquids , 2001, cond-mat/0107071.

[52]  F. Mila Quantum spin liquids , 2000 .