Pure future local temporal logics are expressively complete for Mazurkiewicz traces

The paper settles a long standing problem for Mazurkiewicz traces: the pure future local temporal logic defined with the basic modalities exists-next and until is expressively complete. This means every first-order definable language of Mazurkiewicz traces can be defined in a pure future local temporal logic. The analogous result with a global interpretation has been known, but the treatment of a local interpretation turned out to be much more involved. Local logics are interesting because both the satisfiability problem and the model checking problem are solvable in PSPACE for these logics whereas they are non-elementary for global logics. Both, the (previously known) global and the (new) local results generalize Kamp's Theorem for words, because for sequences local and global viewpoints coincide.

[1]  Paul Gastin,et al.  An Elementary Expressively Complete Temporal Logic for Mazurkiewicz Traces , 2002, ICALP.

[2]  A. Mazurkiewicz Concurrent Program Schemes and their Interpretations , 1977 .

[3]  Paul Gastin,et al.  Local LTL with Past Constants Is Expressively Complete for Mazurkiewicz Traces , 2003, MFCS.

[4]  Paul Gastin,et al.  Infinite Traces , 1990, Semantics of Systems of Concurrent Processes.

[5]  Dominique Perrin,et al.  Recent Results on Automata and Infinite Words , 1984, MFCS.

[6]  Denis Thérien,et al.  DIAMONDS ARE FOREVER: THE VARIETY DA , 2002 .

[7]  Paul Gastin,et al.  Pure Future Local Temporal Logics Are Expressively Complete for Mazurkiewicz Traces , 2004, LATIN.

[8]  P. S. Thiagarajan,et al.  A trace based extension of linear time temporal logic , 1994, Proceedings Ninth Annual IEEE Symposium on Logic in Computer Science.

[9]  Johan Anthory Willem Kamp,et al.  Tense logic and the theory of linear order , 1968 .

[10]  Madhavan Mukund,et al.  Linear time temporal logics over Mazurkiewicz traces , 1996, Partial Order Methods in Verification.

[11]  Saharon Shelah,et al.  On the temporal analysis of fairness , 1980, POPL '80.

[12]  Paul Gastin,et al.  Local Temporal Logic is Expressively Complete for Cograph Dependence Alphabets , 2001, LPAR.

[13]  Robert McNaughton,et al.  Counter-Free Automata (M.I.T. research monograph no. 65) , 1971 .

[14]  N. S. Barnett,et al.  Private communication , 1969 .

[15]  Ramaswamy Ramanujam,et al.  Locally linear time temporal logic , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.

[16]  W. Thomas Star-Free Regular Sets of ~o-Sequences , 2004 .

[17]  Paul Gastin,et al.  Satisfiability and Model Checking for MSO-definable Temporal Logics are in PSPACE , 2003, CONCUR.

[18]  Dominique Perrin,et al.  On the Expressive Power of Temporal Logic , 1993, J. Comput. Syst. Sci..

[19]  WOJCIECH PENCZEK,et al.  Temporal Logics for Trace Systems: On Automated Verification , 1993, Int. J. Found. Comput. Sci..

[20]  Thomas Wilke,et al.  Classifying Discrete Temporal Properties , 1999, STACS.

[21]  Werner Ebinger Charakterisierung von Sprachklassen unendlicher Spuren durch Logiken , 1994 .

[22]  Igor Walukiewicz,et al.  Difficult Configurations—On the Complexity of LTrL , 1998, Formal Methods Syst. Des..

[23]  Wojciech Zielonka,et al.  The Book of Traces , 1995 .

[24]  Volker Diekert A pure future local temporal logic beyond cograph-monoids , 2002 .

[25]  Madhavan Mukund,et al.  Linear time temporal logics over Mazurkiewicz traces , 1996, Partial Order Methods in Verification.

[26]  Manfred Kufleitner Logical fragments for Mazurkiewicz traces: expressive power and algebraic characterizations , 2006 .

[27]  R. McNaughton,et al.  Counter-Free Automata , 1971 .

[28]  Paul Gastin,et al.  From local to global temporal logics over Mazurkiewicz traces , 2006, Theor. Comput. Sci..

[29]  Anca Muscholl,et al.  Logical Definability on Infinite Traces , 1996, Theor. Comput. Sci..

[30]  Bharat Adsul,et al.  Complete and Tractable Local Linear Time Temporal Logics over Traces , 2002, ICALP.

[31]  Marcel Paul Schützenberger,et al.  On Finite Monoids Having Only Trivial Subgroups , 1965, Inf. Control..

[32]  Dominique Perrin,et al.  First-Order Logic and Star-Free Sets , 1986, J. Comput. Syst. Sci..

[33]  Wojciech Penczek,et al.  Model-checking of causality properties , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.

[34]  Igor Walukiewicz,et al.  An expressively complete linear time temporal logic for Mazurkiewicz traces , 1997, Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science.

[35]  Robert M. Keller,et al.  Parallel Program Schemata and Maximal Parallelism I. Fundamental Results , 1973, JACM.

[36]  Paul Gastin,et al.  LTL Is Expressively Complete for Mazurkiewicz Traces , 2000, J. Comput. Syst. Sci..

[37]  Robert M. Keller,et al.  Parallel program schemata and maximal parallelism , 1972 .

[38]  Paul Gastin,et al.  Safety and Liveness Properties for Real Traces and a Direct Translation from LTL to Monoids , 2002, Formal and Natural Computing.

[39]  Peter Niebert,et al.  A v-Calculus with Local Views for Systems of Sequential Agents , 1995, MFCS.