Pure future local temporal logics are expressively complete for Mazurkiewicz traces
暂无分享,去创建一个
[1] Paul Gastin,et al. An Elementary Expressively Complete Temporal Logic for Mazurkiewicz Traces , 2002, ICALP.
[2] A. Mazurkiewicz. Concurrent Program Schemes and their Interpretations , 1977 .
[3] Paul Gastin,et al. Local LTL with Past Constants Is Expressively Complete for Mazurkiewicz Traces , 2003, MFCS.
[4] Paul Gastin,et al. Infinite Traces , 1990, Semantics of Systems of Concurrent Processes.
[5] Dominique Perrin,et al. Recent Results on Automata and Infinite Words , 1984, MFCS.
[6] Denis Thérien,et al. DIAMONDS ARE FOREVER: THE VARIETY DA , 2002 .
[7] Paul Gastin,et al. Pure Future Local Temporal Logics Are Expressively Complete for Mazurkiewicz Traces , 2004, LATIN.
[8] P. S. Thiagarajan,et al. A trace based extension of linear time temporal logic , 1994, Proceedings Ninth Annual IEEE Symposium on Logic in Computer Science.
[9] Johan Anthory Willem Kamp,et al. Tense logic and the theory of linear order , 1968 .
[10] Madhavan Mukund,et al. Linear time temporal logics over Mazurkiewicz traces , 1996, Partial Order Methods in Verification.
[11] Saharon Shelah,et al. On the temporal analysis of fairness , 1980, POPL '80.
[12] Paul Gastin,et al. Local Temporal Logic is Expressively Complete for Cograph Dependence Alphabets , 2001, LPAR.
[13] Robert McNaughton,et al. Counter-Free Automata (M.I.T. research monograph no. 65) , 1971 .
[14] N. S. Barnett,et al. Private communication , 1969 .
[15] Ramaswamy Ramanujam,et al. Locally linear time temporal logic , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.
[16] W. Thomas. Star-Free Regular Sets of ~o-Sequences , 2004 .
[17] Paul Gastin,et al. Satisfiability and Model Checking for MSO-definable Temporal Logics are in PSPACE , 2003, CONCUR.
[18] Dominique Perrin,et al. On the Expressive Power of Temporal Logic , 1993, J. Comput. Syst. Sci..
[19] WOJCIECH PENCZEK,et al. Temporal Logics for Trace Systems: On Automated Verification , 1993, Int. J. Found. Comput. Sci..
[20] Thomas Wilke,et al. Classifying Discrete Temporal Properties , 1999, STACS.
[21] Werner Ebinger. Charakterisierung von Sprachklassen unendlicher Spuren durch Logiken , 1994 .
[22] Igor Walukiewicz,et al. Difficult Configurations—On the Complexity of LTrL , 1998, Formal Methods Syst. Des..
[23] Wojciech Zielonka,et al. The Book of Traces , 1995 .
[24] Volker Diekert. A pure future local temporal logic beyond cograph-monoids , 2002 .
[25] Madhavan Mukund,et al. Linear time temporal logics over Mazurkiewicz traces , 1996, Partial Order Methods in Verification.
[26] Manfred Kufleitner. Logical fragments for Mazurkiewicz traces: expressive power and algebraic characterizations , 2006 .
[27] R. McNaughton,et al. Counter-Free Automata , 1971 .
[28] Paul Gastin,et al. From local to global temporal logics over Mazurkiewicz traces , 2006, Theor. Comput. Sci..
[29] Anca Muscholl,et al. Logical Definability on Infinite Traces , 1996, Theor. Comput. Sci..
[30] Bharat Adsul,et al. Complete and Tractable Local Linear Time Temporal Logics over Traces , 2002, ICALP.
[31] Marcel Paul Schützenberger,et al. On Finite Monoids Having Only Trivial Subgroups , 1965, Inf. Control..
[32] Dominique Perrin,et al. First-Order Logic and Star-Free Sets , 1986, J. Comput. Syst. Sci..
[33] Wojciech Penczek,et al. Model-checking of causality properties , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.
[34] Igor Walukiewicz,et al. An expressively complete linear time temporal logic for Mazurkiewicz traces , 1997, Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science.
[35] Robert M. Keller,et al. Parallel Program Schemata and Maximal Parallelism I. Fundamental Results , 1973, JACM.
[36] Paul Gastin,et al. LTL Is Expressively Complete for Mazurkiewicz Traces , 2000, J. Comput. Syst. Sci..
[37] Robert M. Keller,et al. Parallel program schemata and maximal parallelism , 1972 .
[38] Paul Gastin,et al. Safety and Liveness Properties for Real Traces and a Direct Translation from LTL to Monoids , 2002, Formal and Natural Computing.
[39] Peter Niebert,et al. A v-Calculus with Local Views for Systems of Sequential Agents , 1995, MFCS.