A COSMO-based approach to computer-aided mixture design

Abstract In this work, we adapt the COSMO-RS and -SAC methods to solve computer-aided mixture design (CAMxD) problems. Popular methods in CAMxD require the use of binary interaction parameters to calculate mixture thermodynamics, and this necessity places inherent limitations on the possible chemical search space. Our COSMO-based approach is free of binary interaction parameters and requires only molecular volumes and molecule-specific charge density distributions called sigma profiles for the estimation of solution properties. Additionally, this methodology enables the integration of highly accurate molecular information from ab initio quantum chemistry calculations into mixture design problems. To address the search problem, we project molecular identities and mole fractions on the space of each mixture component's sigma moments, which are analogous to statistical moments for sigma profiles. This approach exploits a natural problem decomposition and capitalizes on fast methods for pure compound design and mixture fraction design. We apply the methodology to two case studies: the design of a liquid–liquid extraction solvent and a reaction rates optimization solvent.

[1]  Efstratios N. Pistikopoulos,et al.  Optimal solvent design for environmental impact minimization , 1998 .

[2]  André Bardow,et al.  Computer-aided molecular design in the continuous-molecular targeting framework using group-contribution PC-SAFT , 2015, Comput. Chem. Eng..

[3]  Rafiqul Gani,et al.  Design of formulated products: Experimental component , 2012 .

[4]  Rafiqul Gani,et al.  Design of Formulated Products: A Systematic Methodology , 2011 .

[5]  Rafiqul Gani,et al.  Computer aided mixture design with specified property constraints , 1992 .

[6]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[7]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .

[8]  Patrick Linke,et al.  Multiobjective molecular design for integrated process‐solvent systems synthesis , 2006 .

[9]  Nikolaos V. Sahinidis,et al.  Global optimization of mixed-integer nonlinear programs: A theoretical and computational study , 2004, Math. Program..

[10]  Rafiqul Gani,et al.  Computer aided molecular and mixture design with specified property constraints , 1993 .

[11]  Andreas Klamt,et al.  Erratum to “COSMO-RS: a novel and efficient method for the a priori prediction of thermophysical data of liquids” [Fluid Phase Equilib. 172 (2000) 43–72] , 2003 .

[12]  A. Klamt,et al.  Fast solvent screening via quantum chemistry: COSMO‐RS approach , 2002 .

[13]  Stanley I. Sandler,et al.  Improvements of COSMO-SAC for vapor–liquid and liquid–liquid equilibrium predictions , 2010 .

[14]  J A McCammon,et al.  Computer-aided molecular design. , 1987, Science.

[15]  S. Sandler,et al.  An Improvement to COSMO-SAC for Predicting Thermodynamic Properties , 2014 .

[16]  Aage Fredenslund,et al.  Group‐contribution estimation of activity coefficients in nonideal liquid mixtures , 1975 .

[17]  Claire S. Adjiman,et al.  Simultaneous prediction of vapour-liquid and liquid-liquid equilibria (VLE and LLE) of aqueous mixtures with the SAFT-γ group contribution approach , 2011 .

[18]  L. Radom,et al.  Extension of Gaussian‐2 (G2) theory to bromine‐ and iodine‐containing molecules: Use of effective core potentials , 1995 .

[19]  A. Klamt,et al.  COSMO-RS: a novel and efficient method for the a priori prediction of thermophysical data of liquids , 2000 .

[20]  Andreas Klamt,et al.  COSMO-RS: From Quantum Chemistry to Fluid Phase Thermodynamics , 2005 .

[21]  George Jackson,et al.  SAFT: Equation-of-state solution model for associating fluids , 1989 .

[22]  Nikolaos V. Sahinidis,et al.  Derivative-free optimization: a review of algorithms and comparison of software implementations , 2013, J. Glob. Optim..

[23]  Tiancheng Mu,et al.  Group contribution prediction of surface charge density profiles for COSMO‐RS(Ol) , 2007 .

[24]  Nikolaos V. Sahinidis,et al.  Mixture design using derivative‐free optimization in the space of individual component properties , 2016 .

[25]  Izak Nieuwoudt,et al.  Design of Solvents for Extractive Distillation , 2000 .

[26]  Efstratios N. Pistikopoulos,et al.  Optimal design of solvent blends for environmental impact minimization , 1999 .

[27]  C. Adjiman,et al.  A hierarchical method to integrated solvent and process design of physical CO2 absorption using the SAFT‐γ Mie approach , 2015 .

[28]  Stanley I. Sandler,et al.  Refinement of COSMO−SAC and the Applications , 2007 .

[29]  Claire S. Adjiman,et al.  Integrated solvent and process design using a SAFT-VR thermodynamic description: High-pressure separation of carbon dioxide and methane , 2011, Comput. Chem. Eng..

[30]  V. Barone,et al.  Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model , 1998 .

[31]  Stanley I. Sandler,et al.  A Priori Phase Equilibrium Prediction from a Segment Contribution Solvation Model , 2002 .

[32]  A. Klamt,et al.  Refinement and Parametrization of COSMO-RS , 1998 .

[33]  Urmila M. Diwekar,et al.  Optimal design of adsorbents for NORM removal from produced water in natural gas fracking. Part 2: CAMD for adsorption of radium and barium , 2015 .

[34]  Rafiqul Gani,et al.  MOLECULAR DESIGN OF SOLVENTS FOR LIQUID EXTRACTION BASED ON UNIFAC , 1983 .

[35]  George Jackson,et al.  A group contribution method for associating chain molecules based on the statistical associating fluid theory (SAFT-gamma). , 2007, The Journal of chemical physics.

[36]  S. F. Naser,et al.  A system for the design of an optimum liquid-liquid extractant molecule , 1991 .

[37]  Ernest J. Henley,et al.  Separation Process Principles , 1998 .

[38]  Sandro Macchietto,et al.  Computer aided molecular design: a novel method for optimal solvent selection , 1993 .

[39]  André Bardow,et al.  Simultaneous Optimization of Working Fluid and Process for Organic Rankine Cycles Using PC-SAFT , 2014 .

[40]  Rafiqul Gani,et al.  A New Decomposition-Based Computer-Aided Molecular/Mixture Design Methodology for the Design of Optimal Solvents and Solvent Mixtures , 2005 .

[41]  Rafiqul Gani,et al.  A computer-aided molecular design framework for crystallization solvent design , 2006 .

[42]  Y. A. Liu,et al.  Sigma-Profile Database for Using COSMO-Based Thermodynamic Methods , 2006 .

[43]  Nikolaos V. Sahinidis,et al.  Design of alternative refrigerants via global optimization , 2003 .

[44]  A. Klamt Conductor-like Screening Model for Real Solvents: A New Approach to the Quantitative Calculation of Solvation Phenomena , 1995 .

[45]  Oliver Kramer,et al.  Derivative-Free Optimization , 2011, Computational Optimization, Methods and Algorithms.

[46]  A. Klamt,et al.  COSMO : a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient , 1993 .

[47]  Efstratios N. Pistikopoulos,et al.  Computer-Aided Solvent Design for Reactions: Maximizing Product Formation , 2008 .

[48]  A. S. Telles,et al.  Computer-aided molecular design with simulated annealing and molecular graphs , 1998 .

[49]  Nikolaos V. Sahinidis,et al.  Optimization‐based framework for computer‐aided molecular design , 2013 .