Transmission of nonuniform memoryless sources via nonsystematic turbo codes
暂无分享,去创建一个
[1] Robert J. McEliece,et al. The Theory of Information and Coding , 1979 .
[2] Khalid Sayood,et al. Use of residual redundancy in the design of joint source/channel coders , 1991, IEEE Trans. Commun..
[3] Nam C. Phamdo. Quantization Over Discrete Noisy Channels Under Complexity Constraints , 1993 .
[4] Alain Glavieux,et al. Reflections on the Prize Paper : "Near optimum error-correcting coding and decoding: turbo codes" , 1998 .
[5] Ivan J. Fair,et al. On the Power Spectral Density of Self-Synchronizing Scrambled Sequences , 1998, IEEE Trans. Inf. Theory.
[6] Joachim Hagenauer. Source-controlled channel decoding , 1995, IEEE Trans. Commun..
[7] Fady Alajaji,et al. Detection of binary Markov sources over channels with additive Markov noise , 1996, IEEE Trans. Inf. Theory.
[8] Nam C. Phamdo,et al. Optimal detection of discrete Markov sources over discrete memoryless channels - applications to combined source-channel coding , 1994, IEEE Trans. Inf. Theory.
[9] Mikael O. Skogland. Bit-estimate based decoding for vector quantization over noisy channels with intersymbol interference , 2000, IEEE Trans. Commun..
[10] Norbert Goertz. On the iterative approximation of optimal joint source-channel decoding , 2001, IEEE J. Sel. Areas Commun..
[11] D. Divsalar,et al. Multiple turbo codes for deep-space communications , 1995 .
[12] David G. Leeper. A universal digital data scrambler , 1973 .
[13] N. Phamdo,et al. Optimal Detection of Discrete Markov Sources Over Discrete Memoryless Channels - Applications to Combined Source-Channel Coding , 1993, Proceedings. IEEE International Symposium on Information Theory.
[14] Andrei V. Kelarev,et al. The Theory of Information and Coding , 2005 .
[15] Tim Fingscheidt,et al. Joint source-channel (de-)coding for mobile communications , 2002, IEEE Trans. Commun..
[16] Shlomo Shamai,et al. The empirical distribution of good codes , 1997, IEEE Trans. Inf. Theory.
[17] David J. Miller,et al. Transport of wireless video using separate, concatenated, and joint source-channel coding , 1999, Proc. IEEE.
[18] Robert J. McEliece. Are Turbo-like Codes Effective on Nonstandard Channels?* , 2001 .
[19] John Cocke,et al. Optimal decoding of linear codes for minimizing symbol error rate (Corresp.) , 1974, IEEE Trans. Inf. Theory.
[20] Toby Berger,et al. Rate distortion theory : a mathematical basis for data compression , 1971 .
[21] Javier Garcia-Frías,et al. Joint turbo decoding and estimation of hidden Markov sources , 2001, IEEE J. Sel. Areas Commun..
[22] Joachim Hagenauer,et al. The turbo principle in joint source channel decoding of variable length codes , 2001, Proceedings 2001 IEEE Information Theory Workshop (Cat. No.01EX494).
[23] N. Gortz. On the iterative approximation of optimal joint source-channel decoding , 2001 .
[24] Daniel J. Costello,et al. Iterative decoding of non-systematic turbo-codes , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).
[25] David J. Miller,et al. Improved image decoding over noisy channels using minimum mean-squared estimation and a Markov mesh , 1999, IEEE Trans. Image Process..
[26] Joachim Hagenauer,et al. Joint source-channel decoding using the residual redundancy in compressed images , 1996, Proceedings of ICC/SUPERCOMM '96 - International Conference on Communications.
[27] Pierre Siohan,et al. Joint source-channel soft decoding of Huffman codes with turbo-codes , 2000, Proceedings DCC 2000. Data Compression Conference.
[28] V. N. Koshelev. Direct sequential encoding and decoding for discrete sources , 1973, IEEE Trans. Inf. Theory.
[29] Stephen G. Wilson,et al. Design and Analysis of Turbo Codes on Rayleigh Fading Channels , 1998, IEEE J. Sel. Areas Commun..
[30] Peter Vary,et al. Iterative source-channel decoder using extrinsic information from softbit-source decoding , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).
[31] Sergio Benedetto,et al. Unveiling turbo codes: some results on parallel concatenated coding schemes , 1996, IEEE Trans. Inf. Theory.
[32] F. Lahouti,et al. Sequence MMSE Source Decoding Over Noisy Channels Using the Residual Redundancies , 2001 .
[33] Sang Joon Kim,et al. A Mathematical Theory of Communication , 2006 .
[34] D. J. Costello,et al. Turbo codes with recursive nonsystematic quick-look-in constituent codes , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).
[35] Javier Garcia-Frías,et al. Combining hidden Markov source models and parallel concatenated codes , 1997, IEEE Communications Letters.
[36] David J. Miller,et al. Joint source-channel decoding for variable-length encoded data by exact and approximate MAP sequence estimation , 2000, IEEE Trans. Commun..
[37] Fady Alajaji,et al. Turbo codes for nonuniform memoryless sources over noisy channels , 2002, IEEE Communications Letters.
[38] Daniel J. Costello,et al. Some Thoughts on the Equivalence of Systematic and Nonsystematic Convolutional Encoders , 2002 .
[39] Fady Alajaji,et al. Design of Turbo Codes for Non-Equiprobable Memoryless Sources , 2001 .
[40] Masoud Salehi,et al. New performance bounds for turbo codes , 1998, IEEE Trans. Commun..
[41] Joachim Hagenauer,et al. Iterative decoding of binary block and convolutional codes , 1996, IEEE Trans. Inf. Theory.
[42] T.E. Fuja,et al. Channel codes that exploit the residual redundancy in CELP-encoded speech , 1996, IEEE Trans. Speech Audio Process..
[43] Martin E. Hellman,et al. Convolutional source encoding , 1975, IEEE Trans. Inf. Theory.
[44] Nariman Farvardin,et al. Scalar quantization of memoryless sources over memoryless channels using rate-one convolutional codes , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.
[45] Nam C. Phamdo,et al. Source-channel optimized trellis codes for bitonal image transmission over AWGN channels , 1999, IEEE Trans. Image Process..
[46] Mikael Skoglund,et al. Soft Decoding for Vector Quantization Over Noisy Channels with Memory , 1999, IEEE Trans. Inf. Theory.