Transmission of nonuniform memoryless sources via nonsystematic turbo codes

We investigate the joint source-channel coding problem of transmitting nonuniform memoryless sources over binary phase-shift keying-modulated additive white Gaussian noise and Rayleigh fading channels via turbo codes. In contrast to previous work, recursive nonsystematic convolutional encoders are proposed as the constituent encoders for heavily biased sources. We prove that under certain conditions, and when the length of the input source sequence tends to infinity, the encoder state distribution and the marginal output distribution of each constituent recursive convolutional encoder become asymptotically uniform, regardless of the degree of source nonuniformity. We also give a conjecture (which is empirically validated) on the condition for the higher order distribution of the encoder output to be asymptotically uniform, irrespective of the source distribution. Consequently, these conditions serve as design criteria for the choice of good encoder structures. As a result, the outputs of our selected nonsystematic turbo codes are suitably matched to the channel input, since a uniformly distributed input maximizes the channel mutual information, and hence, achieves capacity. Simulation results show substantial gains by the nonsystematic codes over previously designed systematic turbo codes; furthermore, their performance is within 0.74-1.17 dB from the Shannon limit. Finally, we compare our joint source-channel coding system with two tandem schemes which employ a fourth-order Huffman code (performing near-optimal data compression) and a turbo code that either gives excellent waterfall bit-error rate (BER) performance or good error-floor performance. At the same overall transmission rate, our system offers robust and superior performance at low BERs (< 10/sup -4/), while its complexity is lower.

[1]  Robert J. McEliece,et al.  The Theory of Information and Coding , 1979 .

[2]  Khalid Sayood,et al.  Use of residual redundancy in the design of joint source/channel coders , 1991, IEEE Trans. Commun..

[3]  Nam C. Phamdo Quantization Over Discrete Noisy Channels Under Complexity Constraints , 1993 .

[4]  Alain Glavieux,et al.  Reflections on the Prize Paper : "Near optimum error-correcting coding and decoding: turbo codes" , 1998 .

[5]  Ivan J. Fair,et al.  On the Power Spectral Density of Self-Synchronizing Scrambled Sequences , 1998, IEEE Trans. Inf. Theory.

[6]  Joachim Hagenauer Source-controlled channel decoding , 1995, IEEE Trans. Commun..

[7]  Fady Alajaji,et al.  Detection of binary Markov sources over channels with additive Markov noise , 1996, IEEE Trans. Inf. Theory.

[8]  Nam C. Phamdo,et al.  Optimal detection of discrete Markov sources over discrete memoryless channels - applications to combined source-channel coding , 1994, IEEE Trans. Inf. Theory.

[9]  Mikael O. Skogland Bit-estimate based decoding for vector quantization over noisy channels with intersymbol interference , 2000, IEEE Trans. Commun..

[10]  Norbert Goertz On the iterative approximation of optimal joint source-channel decoding , 2001, IEEE J. Sel. Areas Commun..

[11]  D. Divsalar,et al.  Multiple turbo codes for deep-space communications , 1995 .

[12]  David G. Leeper A universal digital data scrambler , 1973 .

[13]  N. Phamdo,et al.  Optimal Detection of Discrete Markov Sources Over Discrete Memoryless Channels - Applications to Combined Source-Channel Coding , 1993, Proceedings. IEEE International Symposium on Information Theory.

[14]  Andrei V. Kelarev,et al.  The Theory of Information and Coding , 2005 .

[15]  Tim Fingscheidt,et al.  Joint source-channel (de-)coding for mobile communications , 2002, IEEE Trans. Commun..

[16]  Shlomo Shamai,et al.  The empirical distribution of good codes , 1997, IEEE Trans. Inf. Theory.

[17]  David J. Miller,et al.  Transport of wireless video using separate, concatenated, and joint source-channel coding , 1999, Proc. IEEE.

[18]  Robert J. McEliece Are Turbo-like Codes Effective on Nonstandard Channels?* , 2001 .

[19]  John Cocke,et al.  Optimal decoding of linear codes for minimizing symbol error rate (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[20]  Toby Berger,et al.  Rate distortion theory : a mathematical basis for data compression , 1971 .

[21]  Javier Garcia-Frías,et al.  Joint turbo decoding and estimation of hidden Markov sources , 2001, IEEE J. Sel. Areas Commun..

[22]  Joachim Hagenauer,et al.  The turbo principle in joint source channel decoding of variable length codes , 2001, Proceedings 2001 IEEE Information Theory Workshop (Cat. No.01EX494).

[23]  N. Gortz On the iterative approximation of optimal joint source-channel decoding , 2001 .

[24]  Daniel J. Costello,et al.  Iterative decoding of non-systematic turbo-codes , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[25]  David J. Miller,et al.  Improved image decoding over noisy channels using minimum mean-squared estimation and a Markov mesh , 1999, IEEE Trans. Image Process..

[26]  Joachim Hagenauer,et al.  Joint source-channel decoding using the residual redundancy in compressed images , 1996, Proceedings of ICC/SUPERCOMM '96 - International Conference on Communications.

[27]  Pierre Siohan,et al.  Joint source-channel soft decoding of Huffman codes with turbo-codes , 2000, Proceedings DCC 2000. Data Compression Conference.

[28]  V. N. Koshelev Direct sequential encoding and decoding for discrete sources , 1973, IEEE Trans. Inf. Theory.

[29]  Stephen G. Wilson,et al.  Design and Analysis of Turbo Codes on Rayleigh Fading Channels , 1998, IEEE J. Sel. Areas Commun..

[30]  Peter Vary,et al.  Iterative source-channel decoder using extrinsic information from softbit-source decoding , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[31]  Sergio Benedetto,et al.  Unveiling turbo codes: some results on parallel concatenated coding schemes , 1996, IEEE Trans. Inf. Theory.

[32]  F. Lahouti,et al.  Sequence MMSE Source Decoding Over Noisy Channels Using the Residual Redundancies , 2001 .

[33]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[34]  D. J. Costello,et al.  Turbo codes with recursive nonsystematic quick-look-in constituent codes , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).

[35]  Javier Garcia-Frías,et al.  Combining hidden Markov source models and parallel concatenated codes , 1997, IEEE Communications Letters.

[36]  David J. Miller,et al.  Joint source-channel decoding for variable-length encoded data by exact and approximate MAP sequence estimation , 2000, IEEE Trans. Commun..

[37]  Fady Alajaji,et al.  Turbo codes for nonuniform memoryless sources over noisy channels , 2002, IEEE Communications Letters.

[38]  Daniel J. Costello,et al.  Some Thoughts on the Equivalence of Systematic and Nonsystematic Convolutional Encoders , 2002 .

[39]  Fady Alajaji,et al.  Design of Turbo Codes for Non-Equiprobable Memoryless Sources , 2001 .

[40]  Masoud Salehi,et al.  New performance bounds for turbo codes , 1998, IEEE Trans. Commun..

[41]  Joachim Hagenauer,et al.  Iterative decoding of binary block and convolutional codes , 1996, IEEE Trans. Inf. Theory.

[42]  T.E. Fuja,et al.  Channel codes that exploit the residual redundancy in CELP-encoded speech , 1996, IEEE Trans. Speech Audio Process..

[43]  Martin E. Hellman,et al.  Convolutional source encoding , 1975, IEEE Trans. Inf. Theory.

[44]  Nariman Farvardin,et al.  Scalar quantization of memoryless sources over memoryless channels using rate-one convolutional codes , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.

[45]  Nam C. Phamdo,et al.  Source-channel optimized trellis codes for bitonal image transmission over AWGN channels , 1999, IEEE Trans. Image Process..

[46]  Mikael Skoglund,et al.  Soft Decoding for Vector Quantization Over Noisy Channels with Memory , 1999, IEEE Trans. Inf. Theory.