Optimization of ADC Channels of A Smart Energy Meter Including Random Noise Effects

This paper proposes a multiresponse process optimization through mixed response surface models. The robust design approach is used by involving noise effects in the optimization step. In order to illustrate our proposal, a prototype of an energy meter, based on an open source concept, is studied. The proposed device architecture assures easy development of new applications for the imminent migration to smart grid infrastructures and simple adjustments to comply with possible changes in the international power quality standards. The measurement data of the acquisition channels are collected from signals generated using a high-accuracy waveform generation module. Satisfactory results are obtained, and the multiresponse process optimization provides useful information about the smart energy meter firmware in relation to the suitable acquisition strategy in the signal frequency range of interest. Copyright © 2015 John Wiley & Sons, Ltd.

[1]  John J. Peterson A Posterior Predictive Approach to Multiple Response Surface Optimization , 2004 .

[2]  Tormod Næs,et al.  Sorting of raw materials with focus on multiple end‐product properties , 2002 .

[3]  Wanzhu Tu,et al.  Dual response surface optimization , 1995 .

[4]  Rossella Berni,et al.  Planning and Optimization of a Numerical Control Machine in a Multiple Response Case , 2006, Qual. Reliab. Eng. Int..

[5]  Douglas C. Montgomery,et al.  Modified Desirability Functions for Multiple Response Optimization , 1996 .

[6]  Joachim Kunert,et al.  An Experiment to Compare Taguchi's Product Array and the Combined Array , 2007 .

[7]  Douglas M. Hawkins,et al.  Quality Loss Functions for Optimization across Multiple Response Surfaces , 1997 .

[8]  Hovav A. Dror,et al.  Robust Experimental Design for Multivariate Generalized Linear Models , 2006, Technometrics.

[9]  Bo Bergman,et al.  A methodology for multi-characteristic system improvement with active expert involvement , 2000 .

[10]  N. Doganaksoy,et al.  Joint Optimization of Mean and Standard Deviation Using Response Surface Methods , 2003 .

[11]  Peter R. Nelson,et al.  Dual Response Optimization via Direct Function Minimization , 1996 .

[12]  Giuseppe Cavone,et al.  A proposal for an open source energy meter , 2013, 2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC).

[13]  Douglas C. Montgomery,et al.  Optimization Problems and Methods in Quality Control and Improvement , 2000 .

[14]  R. H. Myers,et al.  Response Surface Alternatives to the Taguchi Robust Parameter Design Approach , 1992 .

[15]  In-Jun Jeong,et al.  Optimal Weighting of Bias and Variance in Dual Response Surface Optimization , 2005 .

[16]  T. Yalcinoz,et al.  A Hopfield Neural Network Approach to the Dual Response Problem , 2005 .

[17]  Christina M. Mastrangelo,et al.  Comparing methods for the multi-response design problem , 2001 .

[18]  John A. Nelder,et al.  Generalized linear models for the analysis of Taguchi-type experiments , 1991 .

[19]  Filippo Attivissimo,et al.  Measuring Time Base Distortion in Analog-Memory Sampling Digitizers , 2008, IEEE Transactions on Instrumentation and Measurement.

[20]  Szu Hui Ng,et al.  A Bayesian Model-Averaging Approach for Multiple-Response Optimization , 2010 .

[21]  Enrique Del Castillo,et al.  THE COMPUTATION OF GLOBAL OPTIMA IN DUAL RESPONSE SYSTEMS , 1997 .

[22]  P.B.S. Reddy,et al.  Unification of robust design and goal programming for multiresponse optimization : A case study , 1997 .

[23]  Marcantonio Catelani,et al.  Mixed response surface models and Bayesian analysis of variance components for electrically conductive adhesives , 2013 .

[24]  Dennis K. J. Lin,et al.  Multiresponse systems optimization using a goal attainment approach , 2004 .

[25]  Vijayan N. Nair,et al.  Noise Variable Settings in Robust Design Experiments , 2012, Technometrics.

[26]  Rossella Berni,et al.  Process Optimization of a Superfinishing Machine through Experimental Design and Mixed Response Surface Models , 2014 .

[27]  Guillermo Miró-Quesada,et al.  Two Approaches for Improving the Dual Response Method in Robust Parameter Design , 2004 .

[28]  W. K. Wong,et al.  A Statistical Investigation and Optimization of an Industrial Radiography Inspection Process for Aero‐engine Components , 2006, Qual. Reliab. Eng. Int..

[29]  Dong-Hee Lee,et al.  An interactive method to multiresponse surface optimization based on pairwise comparisons , 2012 .

[30]  Connie M. Borror,et al.  A Genetic Algorithm Hybrid for Constructing Optimal Response Surface Designs , 2003 .

[31]  William A. Brenneman,et al.  A Dual-Response Approach to Robust Parameter Design for a Generalized Linear Model , 2005 .

[32]  G. Geoffrey Vining,et al.  A Compromise Approach to Multiresponse Optimization , 1998 .

[33]  Raymond H. Myers,et al.  Response Surface Methodology--Current Status and Future Directions , 1999 .

[34]  Juan José González de la Rosa,et al.  A web-based distributed measurement system for electrical power quality assessment , 2010 .

[35]  Siuli Mukhopadhyay,et al.  Response surface methodology , 2010 .

[36]  André I. Khuri Response Surface Models with Mixed Effects , 1996 .

[37]  William A. Brenneman,et al.  Process Optimization via Robust Parameter Design when Categorical Noise Factors are Present , 2006, Qual. Reliab. Eng. Int..

[38]  André I. Khuri,et al.  Mixed Response Surface Models With Heterogeneous Within-Block Error Variances , 2006, Technometrics.

[39]  W. Wimmer,et al.  Applying object-orientation and component technology to architecture design of power system monitoring , 2000, PowerCon 2000. 2000 International Conference on Power System Technology. Proceedings (Cat. No.00EX409).

[40]  Connie M. Borror,et al.  Simultaneous improvement of energy efficiency and product quality in PCB lamination process , 2014 .

[41]  J. Engel,et al.  A generalized linear modeling approach to robust design , 1996 .

[42]  Douglas C. Montgomery,et al.  A Nonlinear Programming Solution to the Dual Response Problem , 1993 .

[43]  Shu-Kai S. Fan A Generalized Global Optimization Algorithm for Dual Response Systems , 2000 .

[44]  Jen-Hao Teng,et al.  A Web-based power quality monitoring system , 2001, 2001 Power Engineering Society Summer Meeting. Conference Proceedings (Cat. No.01CH37262).

[45]  Dennis K. J. Lin,et al.  Dual Response Surface Optimization: A Fuzzy Modeling Approach , 1998 .

[46]  G. Geoffrey Vining,et al.  Combining Taguchi and Response Surface Philosophies: A Dual Response Approach , 1990 .

[47]  Federico M. Stefanini,et al.  T‐optimality and neural networks: a comparison of approaches for building experimental designs , 2012 .

[48]  Grazia Vicario,et al.  Multiresponse Robust Design: A General Framework Based on Combined Array , 2004 .

[49]  Connie M. Borror,et al.  Response Surface Methodology: A Retrospective and Literature Survey , 2004 .

[50]  Douglas C. Montgomery,et al.  Modeling and analyzing semiconductor yield with generalized linear mixed models , 2014 .

[51]  Nada Golmie,et al.  NIST Framework and Roadmap for Smart Grid Interoperability Standards, Release 1.0 , 2010 .

[52]  Giuseppe Cavone,et al.  Improved Static Testing of A/D Converters for DC Measurements , 2007, IEEE Transactions on Instrumentation and Measurement.

[53]  Hussam Alshraideh,et al.  Bayesian Modeling and Optimization of Functional Responses Affected by Noise Factors , 2012 .

[54]  Willis L. Owen,et al.  Modern Statistical Selection, Part I , 1988 .

[55]  A. Khuri,et al.  Simultaneous Optimization of Multiple Responses Represented by Polynomial Regression Functions , 1981 .

[56]  Filippo Attivissimo,et al.  Measuring Dynamic Nonlinearity of Digitizers Affected by Time Base Distortion , 2011, IEEE Transactions on Instrumentation and Measurement.

[57]  Loon Ching Tang,et al.  A unified approach for dual response surface optimization , 2002 .

[58]  Enrique Del Castillo,et al.  Model and Distribution-Robust Process Optimization with Noise Factors , 2005 .

[59]  G. Derringer,et al.  Simultaneous Optimization of Several Response Variables , 1980 .

[60]  Douglas C. Montgomery,et al.  Robust Parameter Design Using Generalized Linear Mixed Models , 2006 .

[61]  Filippo Attivissimo,et al.  Channel Characterization of an Open Source Energy Meter , 2014, IEEE Transactions on Instrumentation and Measurement.

[62]  Ferdinanda Ponci,et al.  A Mobile Agent for Measurements in Distributed Power Electronic Systems , 2008, IEEE Transactions on Instrumentation and Measurement.

[63]  M. McGranaghan,et al.  Substation power quality performance monitoring and the Internet , 2001, 2001 Power Engineering Society Summer Meeting. Conference Proceedings (Cat. No.01CH37262).

[64]  Alejandro Heredia-Langner,et al.  A Genetic Algorithm Approach to Multiple-Response Optimization , 2004 .

[65]  John A. Nelder,et al.  Robust Design via Generalized Linear Models , 2003 .

[66]  Christina M. Mastrangelo,et al.  Comparing Multi‐response Design Methods with Mixed Responses , 2004 .

[67]  João Lourenço,et al.  Multiresponse Optimization and Pareto Frontiers , 2012, Qual. Reliab. Eng. Int..

[68]  Christine M. Anderson-Cook,et al.  Process Optimization for Multiple Responses Utilizing the Pareto Front Approach , 2014 .

[69]  M. Hamada,et al.  Analyzing Experiments with Correlated Multiple Responses , 2001 .

[70]  Joseph J. Pignatiello,et al.  STRATEGIES FOR ROBUST MULTIRESPONSE QUALITY ENGINEERING , 1993 .

[71]  John F. MacGregor,et al.  ASQC Chemical Division Technical Conference 1971 Prize Winning Paper Some Problems Associated with the Analysis of Multiresponse Data , 1973 .

[72]  Connie M. Borror,et al.  Model-Robust Optimal Designs: A Genetic Algorithm Approach , 2004 .

[73]  Young-Hyun Ko,et al.  A New Loss Function-Based Method for Multiresponse Optimization , 2005 .

[74]  Jai-Hyun Byun,et al.  An Integrative Loss Function Approach to Multi‐Response Optimization , 2015, Qual. Reliab. Eng. Int..