Exact finite dimensional representations of models for physiologically structured populations

[1]  William Gurney,et al.  The systematic formulation of delay-differential models of age or size structured populations , 1983 .

[2]  R M Nisbet,et al.  Stage-structure models of populations with distinct growth and development processes. , 1985, IMA journal of mathematics applied in medicine and biology.

[3]  Morton E. Gurtin,et al.  Some simple models for nonlinear age-dependent population dynamics , 1979 .

[4]  L. Murphy A nonlinear growth mechanism in size structured population dynamics , 1983 .

[5]  O. Diekmann,et al.  The escalator boxcar train: basic theory and an application to Daphnia population dynamics , 1988 .

[6]  D. Fargue,et al.  Reductibilite des systemes hereditaires , 1974 .

[7]  R. M. Nisbet,et al.  THE SYSTEMATIC FORMULATION OF TRACTABLE SINGLE-SPECIES POPULATION MODELS , 1983 .

[8]  Y. Hadar,et al.  A model for pellet size distributions in submerged mycelial cultures , 1983 .

[9]  H. Heijmans On the stable size distribution of populations reproducing by fission into two unequal parts , 1984 .

[10]  R. M. Nisbet,et al.  The Formulation of Age-Structure Models , 1986 .

[11]  Morton E. Gurtin,et al.  Non-linear age-dependent population dynamics , 1974 .

[12]  William Gurney,et al.  The systematic formulation of population models for insects with dynamically varying instar duration , 1983 .

[13]  R M Nisbet,et al.  The dynamics of population models with distributed maturation periods. , 1984, Theoretical population biology.

[14]  Odo Diekmann,et al.  Perturbation theory for dual semigroups II. Time-dependent perturbations in the sun-reflexive case , 1988, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.