Nonadditive entropy reconciles the area law in quantum systems with classical thermodynamics.

The Boltzmann-Gibbs-von Neumann entropy of a large part (of linear size L ) of some (much larger) d -dimensional quantum systems follows the so-called area law (as for black holes), i.e., it is proportional to Ld-1. Here we show, for d=1,2 , that the (nonadditive) entropy Sq satisfies, for a special value of q not equal to 1, the classical thermodynamical prescription for the entropy to be extensive, i.e., Sq proportional variant Ld. Therefore, we reconcile with classical thermodynamics the area law widespread in quantum systems. Recently, a similar behavior was exhibited in mathematical models with scale-invariant correlations [C. Tsallis, M. Gell-Mann, and Y. Sato, Proc. Natl. Acad. Sci. U.S.A.102 15377 (2005)]. Finally, we find that the system critical features are marked by a maximum of the special entropic index q.

[1]  Karol Zyczkowski,et al.  Relativity of Pure States Entanglement , 2002 .

[2]  A. J. Short,et al.  Entanglement and the foundations of statistical mechanics , 2005 .

[3]  F. Wilczek,et al.  Geometric and renormalized entropy in conformal field theory , 1994, hep-th/9403108.

[4]  Filippo Giraldi,et al.  Quantum Entanglement and Entropy , 2001 .

[5]  C. Tsallis,et al.  Peres criterion for separability through nonextensive entropy , 2001 .

[6]  C. Tsallis,et al.  Nonergodicity and central-limit behavior for long-range Hamiltonians , 2007, 0706.4021.

[7]  Constantino Tsallis,et al.  Nonextensive statistical mechanics: A brief introduction , 2004 .

[8]  Eytan Barouch,et al.  Statistical Mechanics of the X Y Model. II. Spin-Correlation Functions , 1971 .

[9]  Funabashi,et al.  Nonadditive conditional entropy and its significance for local realism , 2000, quant-ph/0001085.

[10]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[11]  Zoltán Daróczy,et al.  Generalized Information Functions , 1970, Inf. Control..

[12]  C. Tsallis,et al.  Breakdown of Exponential Sensitivity to Initial Conditions: Role of the Range of Interactions , 1998 .

[13]  Eytan Barouch,et al.  Statistical Mechanics of the XY Model. III , 1970 .

[14]  J Eisert,et al.  Entropy, entanglement, and area: analytical results for harmonic lattice systems. , 2005, Physical review letters.

[15]  J. Bekenstein Black holes and information theory , 2003, quant-ph/0311049.

[16]  A. Mackay On complexity , 2001 .

[17]  P. Douglas,et al.  Tunable Tsallis distributions in dissipative optical lattices. , 2006, Physical review letters.

[18]  Vladimir E. Korepin,et al.  Quantum Spin Chain, Toeplitz Determinants and the Fisher—Hartwig Conjecture , 2004 .

[19]  E. Ungureanu,et al.  Molecular Physics , 2008, Nature.

[20]  Fluctuations in subsystems of the zero-temperature XX chain: emergence of an effective temperature , 2006, cond-mat/0609682.

[21]  M. Nielsen,et al.  Entanglement in a simple quantum phase transition , 2002, quant-ph/0202162.

[22]  J. Bekenstein,et al.  Black holes and the second law , 2019, Jacob Bekenstein.

[23]  J. M. Oshorn Proc. Nat. Acad. Sei , 1978 .

[24]  Constantino Tsallis,et al.  Asymptotically scale-invariant occupancy of phase space makes the entropy Sq extensive , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[25]  M. Srednicki,et al.  Entropy and area. , 1993, Physical review letters.

[26]  Robert Savit,et al.  Duality in field theory and statistical systems , 1980 .

[27]  On geometric entropy , 1994, hep-th/9401072.

[28]  Giorgio Benedek,et al.  Nonextensive statistical mechanics : new trends , new perspectives , 2005 .

[29]  K. Życzkowski,et al.  Wehrl entropy, Lieb conjecture, and entanglement monotones , 2003, quant-ph/0307169.

[30]  V. Vedral,et al.  Entanglement in many-body systems , 2007, quant-ph/0703044.

[31]  Jan Havrda,et al.  Quantification method of classification processes. Concept of structural a-entropy , 1967, Kybernetika.

[32]  C. Tsallis,et al.  Nonextensive Entropy: Interdisciplinary Applications , 2004 .

[33]  J. Bekenstein Black Holes and Entropy , 1973, Jacob Bekenstein.

[34]  F. Franchini,et al.  Renyi entropy of the XY spin chain , 2007, 0707.2534.

[35]  A. Zeilinger,et al.  Conceptual inadequacy of the Shannon information in quantum measurements , 2000, quant-ph/0006087.

[36]  Unorthodox properties of critical clusters , 2005, cond-mat/0504044.

[37]  E. Lieb,et al.  Two Soluble Models of an Antiferromagnetic Chain , 1961 .

[38]  R. Bousso The Holographic principle , 2002, hep-th/0203101.

[39]  M. Lavagna Quantum Phase Transitions , 2001, cond-mat/0102119.

[40]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[41]  C. Tsallis Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World , 2009 .

[42]  V. Korepin,et al.  Entanglement in the XY spin chain , 2004 .

[43]  José Ignacio Latorre,et al.  Ground state entanglement in quantum spin chains , 2004, Quantum Inf. Comput..

[44]  J. Cardy,et al.  Entanglement entropy and quantum field theory , 2004, hep-th/0405152.

[45]  A. K. Rajagopal,et al.  Classical statistics inherent in a quantum density matrix , 2005 .

[46]  P. Pfeuty The one-dimensional Ising model with a transverse field , 1970 .

[47]  Lee,et al.  Quantum source of entropy for black holes. , 1986, Physical review. D, Particles and fields.

[48]  Martin B. Plenio,et al.  An introduction to entanglement measures , 2005, Quantum Inf. Comput..

[49]  J. Eisert,et al.  Entanglement-area law for general bosonic harmonic lattice systems (14 pages) , 2005, quant-ph/0505092.

[50]  G. Vidal,et al.  Entanglement in quantum critical phenomena. , 2002, Physical review letters.

[51]  A. Osterloh,et al.  Scaling of entanglement close to a quantum phase transition , 2002, Nature.

[52]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[53]  Bin Liu,et al.  Superdiffusion and non-Gaussian statistics in a driven-dissipative 2D dusty plasma. , 2008, Physical review letters.

[54]  Ulrich Schollwoeck,et al.  Entanglement scaling in critical two-dimensional fermionic and bosonic systems , 2006 .

[55]  M. J. Strassler,et al.  A Comment on Entropy and Area , 1994 .

[56]  Brandon Carter,et al.  The four laws of black hole mechanics , 1973 .

[57]  Funabashi,et al.  Quantum entanglement inferred by the principle of maximum nonadditive entropy , 1999 .

[58]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[59]  G. Hooft On the Quantum Structure of a Black Hole , 1985 .