Nonadditive entropy reconciles the area law in quantum systems with classical thermodynamics.
暂无分享,去创建一个
[1] Karol Zyczkowski,et al. Relativity of Pure States Entanglement , 2002 .
[2] A. J. Short,et al. Entanglement and the foundations of statistical mechanics , 2005 .
[3] F. Wilczek,et al. Geometric and renormalized entropy in conformal field theory , 1994, hep-th/9403108.
[4] Filippo Giraldi,et al. Quantum Entanglement and Entropy , 2001 .
[5] C. Tsallis,et al. Peres criterion for separability through nonextensive entropy , 2001 .
[6] C. Tsallis,et al. Nonergodicity and central-limit behavior for long-range Hamiltonians , 2007, 0706.4021.
[7] Constantino Tsallis,et al. Nonextensive statistical mechanics: A brief introduction , 2004 .
[8] Eytan Barouch,et al. Statistical Mechanics of the X Y Model. II. Spin-Correlation Functions , 1971 .
[9] Funabashi,et al. Nonadditive conditional entropy and its significance for local realism , 2000, quant-ph/0001085.
[10] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[11] Zoltán Daróczy,et al. Generalized Information Functions , 1970, Inf. Control..
[12] C. Tsallis,et al. Breakdown of Exponential Sensitivity to Initial Conditions: Role of the Range of Interactions , 1998 .
[13] Eytan Barouch,et al. Statistical Mechanics of the XY Model. III , 1970 .
[14] J Eisert,et al. Entropy, entanglement, and area: analytical results for harmonic lattice systems. , 2005, Physical review letters.
[15] J. Bekenstein. Black holes and information theory , 2003, quant-ph/0311049.
[16] A. Mackay. On complexity , 2001 .
[17] P. Douglas,et al. Tunable Tsallis distributions in dissipative optical lattices. , 2006, Physical review letters.
[18] Vladimir E. Korepin,et al. Quantum Spin Chain, Toeplitz Determinants and the Fisher—Hartwig Conjecture , 2004 .
[19] E. Ungureanu,et al. Molecular Physics , 2008, Nature.
[20] Fluctuations in subsystems of the zero-temperature XX chain: emergence of an effective temperature , 2006, cond-mat/0609682.
[21] M. Nielsen,et al. Entanglement in a simple quantum phase transition , 2002, quant-ph/0202162.
[22] J. Bekenstein,et al. Black holes and the second law , 2019, Jacob Bekenstein.
[23] J. M. Oshorn. Proc. Nat. Acad. Sei , 1978 .
[24] Constantino Tsallis,et al. Asymptotically scale-invariant occupancy of phase space makes the entropy Sq extensive , 2005, Proceedings of the National Academy of Sciences of the United States of America.
[25] M. Srednicki,et al. Entropy and area. , 1993, Physical review letters.
[26] Robert Savit,et al. Duality in field theory and statistical systems , 1980 .
[27] On geometric entropy , 1994, hep-th/9401072.
[28] Giorgio Benedek,et al. Nonextensive statistical mechanics : new trends , new perspectives , 2005 .
[29] K. Życzkowski,et al. Wehrl entropy, Lieb conjecture, and entanglement monotones , 2003, quant-ph/0307169.
[30] V. Vedral,et al. Entanglement in many-body systems , 2007, quant-ph/0703044.
[31] Jan Havrda,et al. Quantification method of classification processes. Concept of structural a-entropy , 1967, Kybernetika.
[32] C. Tsallis,et al. Nonextensive Entropy: Interdisciplinary Applications , 2004 .
[33] J. Bekenstein. Black Holes and Entropy , 1973, Jacob Bekenstein.
[34] F. Franchini,et al. Renyi entropy of the XY spin chain , 2007, 0707.2534.
[35] A. Zeilinger,et al. Conceptual inadequacy of the Shannon information in quantum measurements , 2000, quant-ph/0006087.
[36] Unorthodox properties of critical clusters , 2005, cond-mat/0504044.
[37] E. Lieb,et al. Two Soluble Models of an Antiferromagnetic Chain , 1961 .
[38] R. Bousso. The Holographic principle , 2002, hep-th/0203101.
[39] M. Lavagna. Quantum Phase Transitions , 2001, cond-mat/0102119.
[40] C. Tsallis. Possible generalization of Boltzmann-Gibbs statistics , 1988 .
[41] C. Tsallis. Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World , 2009 .
[42] V. Korepin,et al. Entanglement in the XY spin chain , 2004 .
[43] José Ignacio Latorre,et al. Ground state entanglement in quantum spin chains , 2004, Quantum Inf. Comput..
[44] J. Cardy,et al. Entanglement entropy and quantum field theory , 2004, hep-th/0405152.
[45] A. K. Rajagopal,et al. Classical statistics inherent in a quantum density matrix , 2005 .
[46] P. Pfeuty. The one-dimensional Ising model with a transverse field , 1970 .
[47] Lee,et al. Quantum source of entropy for black holes. , 1986, Physical review. D, Particles and fields.
[48] Martin B. Plenio,et al. An introduction to entanglement measures , 2005, Quantum Inf. Comput..
[49] J. Eisert,et al. Entanglement-area law for general bosonic harmonic lattice systems (14 pages) , 2005, quant-ph/0505092.
[50] G. Vidal,et al. Entanglement in quantum critical phenomena. , 2002, Physical review letters.
[51] A. Osterloh,et al. Scaling of entanglement close to a quantum phase transition , 2002, Nature.
[52] Ericka Stricklin-Parker,et al. Ann , 2005 .
[53] Bin Liu,et al. Superdiffusion and non-Gaussian statistics in a driven-dissipative 2D dusty plasma. , 2008, Physical review letters.
[54] Ulrich Schollwoeck,et al. Entanglement scaling in critical two-dimensional fermionic and bosonic systems , 2006 .
[55] M. J. Strassler,et al. A Comment on Entropy and Area , 1994 .
[56] Brandon Carter,et al. The four laws of black hole mechanics , 1973 .
[57] Funabashi,et al. Quantum entanglement inferred by the principle of maximum nonadditive entropy , 1999 .
[58] R. Rosenfeld. Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.
[59] G. Hooft. On the Quantum Structure of a Black Hole , 1985 .