A class of cyclic unequal error protection codes (Corresp.)

This correspondence presents a new class of cyclic majority-logic decodable codes. The codes provide unequal error protection for the information digits, i.e., some decoded digits are guaranteed to be correct despite t_1 or fewer channel errors even though the minimum distance of the code guarantees protection from only t_0 errors and t_1 > t_0 .

[1]  Willis C. Gore Further results on product codes , 1970, IEEE Trans. Inf. Theory.

[2]  Jack K. Wolf,et al.  On linear unequal error protection codes , 1967, IEEE Trans. Inf. Theory.

[3]  E. J. Weldon,et al.  Cyclic product codes , 1965, IEEE Trans. Inf. Theory.

[4]  Willis C. Gore,et al.  Cyclic codes with unequal error protection (Corresp.) , 1971, IEEE Trans. Inf. Theory.

[5]  Shu Lin,et al.  Further results on cyclic product codes , 1970, IEEE Trans. Inf. Theory.

[6]  Lalit R. Bahl,et al.  Multiple-Burst-Error Correction by Threshold Decoding , 1969, Inf. Control..

[7]  C. Kilgus,et al.  Root-Mean-Square Error in Encoded Digital Telemetry , 1972, IEEE Trans. Commun..