Solvent-type-dependent polymorphism and charge transport in a long fused-ring organic semiconductor.

Crystalline polymorphism of organic semiconductors is among the critical factors in determining the structure and properties of the resultant organic electronic devices. Herein we report for the first time a solvent-type-dependent polymorphism of a long fused-ring organic semiconductor and its crucial effects on charge transport. A new polymorph of 5,11-bis(triethylsilylethynyl)anthradithiophene (TES ADT) is obtained using solvent-assisted crystallization, and the crystalline polymorphism of TES ADT thin films is correlated with their measured hole mobilities. The best-performing organic thin film transistors of the two TES ADT polymorphs show subthreshold slopes close to 1 V dec(-1), and threshold voltages close to zero, indicating that the density of traps at the semiconductor-dielectric interface is negligible in these devices and the observed up to 10-fold differences in hole mobilities of devices fabricated with different solvents are largely resultant from the presence of two TES ADT polymorphs. Moreover, our results suggest that the best-performing TES ADT devices reported in the literature correspond to the new polymorph identified in this study, which involves crystallization from a weakly polar solvent (such as toluene and chloroform).

[1]  R. Haddon,et al.  Enhanced Physical Properties in a Pentacene Polymorph. , 2001, Angewandte Chemie.

[2]  Hee Taek Yi,et al.  Ultra-flexible solution-processed organic field-effect transistors , 2012, Nature Communications.

[3]  P. Rannou,et al.  Influence of polymorphism on charge transport properties in isomers of fluorenone-based liquid crystalline semiconductors. , 2012, Chemical communications.

[4]  John E. Anthony,et al.  Solvent-dependent electrical characteristics and stability of organic thin-film transistors with drop cast bis(triisopropylsilylethynyl) pentacene , 2008 .

[5]  David C. Martin,et al.  Thermally induced solid-state phase transition of bis(triisopropylsilylethynyl) pentacene crystals. , 2006, The journal of physical chemistry. B.

[6]  Joel Bernstein,et al.  Polymorphism in Molecular Crystals , 2002 .

[7]  G. Horowitz,et al.  Polymorphism in Oligothiophenes with an Even Number of Thiophene Subunits , 1998 .

[8]  W. Porzio,et al.  Crystal-to-crystal phase transition in α-quaterthiophene: An optical and structural study , 2007 .

[9]  L. Drummy,et al.  Thickness‐Driven Orthorhombic to Triclinic Phase Transformation in Pentacene Thin Films , 2005 .

[10]  Yoshio Saito,et al.  Polymorphism in pentacene thin films on SiO2 substrate , 2007 .

[11]  G. Scoles,et al.  Structure of pentacene thin films , 2004 .

[12]  C. C. Mattheus,et al.  Polymorphism in pentacene. , 2001, Acta crystallographica. Section C, Crystal structure communications.

[13]  A. Navrotsky,et al.  Surface Energies and Thermodynamic Phase Stability in Nanocrystalline Aluminas , 1997 .

[14]  A. Matzger,et al.  The use of polymer heteronuclei for crystalline polymorph selection. , 2002, Journal of the American Chemical Society.

[15]  A. Troisi,et al.  Band structure of the four pentacene polymorphs and effect on the hole mobility at low temperature. , 2005, The journal of physical chemistry. B.

[16]  H. Sheu,et al.  New Pentacene Crystalline Phase Induced by Nanoimprinted Polyimide Gratings , 2012 .

[17]  Liyan Yu,et al.  Influence of Solid-State Microstructure on the Electronic Performance of 5,11-Bis(triethylsilylethynyl) Anthradithiophene , 2013 .

[18]  P. Hermet,et al.  Polymorphism of Crystalline α-Quaterthiophene and α-Sexithiophene: Ab Initio Analysis and Comparison with Inelastic Neutron Scattering Response , 2005 .

[19]  Wi Hyoung Lee,et al.  Room‐Temperature Self‐Organizing Characteristics of Soluble Acene Field‐Effect Transistors , 2008 .

[20]  A. Matzger,et al.  Crystalline polymorph selection and discovery with polymer heteronuclei. , 2005, Journal of the American Chemical Society.

[21]  Ping Liu,et al.  Unique Polymorphism of Oligothiophenes , 2007 .

[22]  Denis Fichou,et al.  Structural order in conjugated oligothiophenes and its implications on opto-electronic devices , 2000 .

[23]  John E. Anthony,et al.  Tailored interfaces for self-patterning organic thin-film transistors , 2012 .

[24]  Thomas N Jackson,et al.  Organic field-effect transistors from solution-deposited functionalized acenes with mobilities as high as 1 cm2/V x s. , 2005, Journal of the American Chemical Society.

[25]  E. Venuti,et al.  Pressure-induced phase transition in pentacene , 2003 .

[26]  Jean-Luc Brédas,et al.  Charge transport in organic semiconductors. , 2007, Chemical reviews.

[27]  Marta Mas-Torrent,et al.  Role of molecular order and solid-state structure in organic field-effect transistors. , 2011, Chemical reviews.

[28]  John E. Anthony,et al.  The influence of side chains on the structures and properties of functionalized pentacenes , 2008 .

[29]  Wi Hyoung Lee,et al.  Change of molecular ordering in soluble acenes via solvent annealing and its effect on field-effect mobility , 2007 .

[30]  Hagen Klauk,et al.  Organic thin-film transistors. , 2010, Chemical Society reviews.

[31]  Wi Hyoung Lee,et al.  Semiconductor‐Dielectric Blends: A Facile All Solution Route to Flexible All‐Organic Transistors , 2009 .

[32]  E. Venuti,et al.  Polymorphs of α-sexithiophene probed by lattice phonon Raman microscopy , 2006 .

[33]  Alán Aspuru-Guzik,et al.  Tuning charge transport in solution-sheared organic semiconductors using lattice strain , 2011, Nature.

[34]  Auke Meetsma,et al.  Identification of polymorphs of pentacene , 2002 .

[35]  Cheng Wang,et al.  Controlling Nucleation and Crystallization in Solution‐Processed Organic Semiconductors for Thin‐Film Transistors , 2009 .

[36]  C. Rovira,et al.  High‐Performance Single Crystal Organic Field‐Effect Transistors Based on Two Dithiophene‐Tetrathiafulvalene (DT‐TTF) Polymorphs , 2010, Advanced materials.

[37]  Liyan Yu,et al.  Single-step solution processing of small-molecule organic semiconductor field-effect transistors at high yield , 2011 .

[38]  T. Jackson,et al.  Thin-film morphology and transistor performance of alkyl-substituted triethylsilylethynyl anthradithiophenes , 2009 .

[39]  C. Rovira,et al.  The four polymorphic modifications of the semiconductor dibenzo-tetrathiafulvalene , 2008 .

[40]  John E. Anthony,et al.  Improving Organic Thin‐Film Transistor Performance through Solvent‐Vapor Annealing of Solution‐Processable Triethylsilylethynyl Anthradithiophene , 2006 .

[41]  Zhongyue Zhang,et al.  Dramatically different conductivity properties of metal-organic framework polymorphs of Tl(TCNQ): an unexpected room-temperature crystal-to-crystal phase transition. , 2011, Angewandte Chemie.

[42]  John E. Anthony,et al.  Effects of polymorphism on charge transport in organic semiconductors , 2009 .

[43]  Liang-Jen Fan,et al.  Origin of high field-effect mobility in solvent-vapor annealed anthradithiophene derivative , 2010 .

[44]  R. J. Kline,et al.  Zone-refinement effect in small molecule-polymer blend semiconductors for organic thin-film transistors. , 2011, Journal of the American Chemical Society.

[45]  A. Salleo,et al.  Effect of Acene Length on Electronic Properties in 5‐, 6‐, and 7‐Ringed Heteroacenes , 2011, Advanced materials.