Hierarchical structure Ti-doped WO3 film with improved electrochromism in visible-infrared region

Hierarchical structure Ti-doped WO3 thin films are prepared by a template-free hydrothermal method. The influence of Ti doping on the electrochromic properties of WO3 thin films is investigated in the visible-infrared region. Ti doping can lead to significant surface morphology change and lower the crystallization, which plays an important role in the electrochromic properties of WO3 films. The large transmittance modulation (49.1% at 750 nm, 64.6% at 2000 nm and 59.3% at 10 μm), fast switching speed (1.7 s and 1.6 s) and high coloration efficiency (68 cm2 C−1 at 750 nm) are achieved for the low Ti-doped WO3 film. The enhancement in the electrochromic performance of the low Ti-doped WO3 films is attributed to their low crystallization, a star-like structure which has low charge transfer and ion diffusion resistance, leading to superior electrical conductivity and reaction kinetics.

[1]  J. Tu,et al.  Microstructure and infrared reflectance modulation properties in DC-sputtered tungsten oxide films , 2011 .

[2]  Dong Soo Yun,et al.  Virus-templated iridium oxide-gold hybrid nanowires for electrochromic application. , 2012, Nanoscale.

[3]  Xiao Wei Sun,et al.  Morphology-tailored synthesis of tungsten trioxide (hydrate) thin films and their photocatalytic properties. , 2011, ACS applied materials & interfaces.

[4]  Claes-Göran Granqvist,et al.  Electrochromic coatings and devices: survey of some recent advances , 2003 .

[5]  Michael Grätzel,et al.  Materials science: Ultrafast colour displays , 2001, Nature.

[6]  Xingfang Hu,et al.  Electrochromic properties of TiO2-doped WO3 films spin-coated from Ti-stabilized peroxotungstic acid , 2001 .

[7]  Y. Hayashi,et al.  The Structural Changes of Indium-Tin Oxide and a-WO3 Films by Introducing Water to the Deposition Processes , 1991 .

[8]  P. K. Effa,et al.  Discharge Kinetics of the Nickel Electrode , 1984 .

[9]  J. Tu,et al.  Graphene sheet/porous NiO hybrid film for supercapacitor applications. , 2011, Chemistry.

[10]  C. E. Tracy,et al.  Electrochromic and optical properties of mesoporous tungsten oxide films , 2002 .

[11]  C. Lampert Large-Area Smart Glass And Integrated Photovoltaics , 2003 .

[12]  Ullrich Steiner,et al.  Enhanced Electrochromism in Gyroid‐Structured Vanadium Pentoxide , 2012, Advanced materials.

[13]  J. Tu,et al.  Multicolor electrochromic polyaniline–WO3 hybrid thin films: One-pot molecular assembling synthesis , 2011 .

[14]  S. Hashimoto,et al.  Lifetime of Electrochromism of Amorphous WO 3 ‐ TiO2 Thin Films , 1991 .

[15]  Junhua Kong,et al.  Layer-by-layer assembled sulfonated-graphene/polyaniline nanocomposite films: enhanced electrical and ionic conductivities, and electrochromic properties , 2012 .

[16]  A. Srivastava,et al.  Electrochromic device response controlled by an in situ polymerized ionic liquid based gel electrolyte , 2012 .

[17]  Jen‐Sue Chen,et al.  Outperformed electrochromic behavior of poly(ethylene glycol)-template nanostructured tungsten oxide films with enhanced charge transfer/transport characteristics. , 2009, Physical chemistry chemical physics : PCCP.

[18]  M. Schubert,et al.  All-solid-state electrochromic reflectance device for emittance modulation in the far-infrared spectral region , 2000 .

[19]  Claes-Göran Granqvist Electrochromics for energy efficiency and indoor comfort , 2008 .

[20]  J. Tu,et al.  Optimized performances of core–shell structured LiFePO4/C nanocomposite , 2011 .

[21]  V. I. Bukhtiyarov,et al.  XPS and SIMS characterization , 2000 .

[22]  A. Dillon,et al.  In situ crystallization of high performing WO3-based electrochromic materials and the importance for durability and switching kinetics , 2012 .

[23]  Xiujian Zhao,et al.  The synthesis, characterization, photocatalytic evaluation and deactivation behavior of sheet-like nano titania , 2012, Journal of Wuhan University of Technology-Mater. Sci. Ed..

[24]  Jun Zhang,et al.  Cobalt Oxide Ordered Bowl-Like Array Films Prepared by Electrodeposition through Monolayer Polystyrene Sphere Template and Electrochromic Properties , 2010 .

[25]  S. Zhuiykov,et al.  The anodized crystalline WO3 nanoporous network with enhanced electrochromic properties. , 2012, Nanoscale.

[26]  Yao Li,et al.  Improved electrochromic performance of ordered macroporous tungsten oxide films for IR electrochromic device , 2012 .

[27]  E. Zayim,et al.  Optical and electrochromic properties of sol–gel made anti-reflective WO3–TiO2 films , 2005 .

[28]  D. Zhao,et al.  Preparation and Enhanced Electrochromic Property of Three-dimensional Ordered Mesostructured Mixed Tungsten–Titanium Oxides , 2004 .

[29]  S. A. Agnihotry,et al.  Electrodeposited tungsten oxide films: annealing effects on structure and electrochromic performance , 2004 .

[30]  Rachel M Brown,et al.  Electrochromic enhancement of latent fingerprints by poly(3,4-ethylenedioxythiophene). , 2012, Physical chemistry chemical physics : PCCP.

[31]  Hui Huang,et al.  Enhanced electrochromics of nanoporous cobalt oxide thin film prepared by a facile chemical bath deposition , 2008 .

[32]  Wei Li,et al.  Core/shell SmCo5/Sm2O3 magnetic composite nanoparticles , 2012, Journal of Nanoparticle Research.

[33]  John A. Woollam,et al.  Prospects for IR emissivity control using electrochromic structures 1 Presentented at the ICMCTF 97 , 1999 .

[34]  Claes G. Granqvist,et al.  Oxide Electrochromics : Why, How, and Whither , 2008 .

[35]  P. Patil,et al.  Titanium doping effects in electrochromic pulsed spray pyrolysed WO3 thin films , 2008 .

[36]  Xuehong Lu,et al.  High ionic conductivity P(VDF-TrFE)/PEO blended polymer electrolytes for solid electrochromic devices. , 2011, Physical chemistry chemical physics : PCCP.

[37]  C. Lin,et al.  Preparation and characterization of nanocrystalline porous TiO2/WO3 composite thin films , 2006 .

[38]  K. Hoshino,et al.  Electrochromic properties of ITO nanoparticles/viologen composite film electrodes , 2012 .

[39]  J. Tu,et al.  Electrochromic behavior of WO3 nanotree films prepared by hydrothermal oxidation , 2011 .

[40]  X. Xia,et al.  Multistage Coloring Electrochromic Device Based on TiO2 Nanotube Arrays Modified with WO3 Nanoparticles , 2011 .

[41]  C. Granqvist,et al.  Electrochromism in sputter deposited nickel-containing tungsten oxide films , 2012 .

[42]  C. Granqvist,et al.  Advances in chromogenic materials and devices , 2010 .

[43]  Xiujian Zhao,et al.  Low Temperature Preparation and Characterization of N-doped and N-S-codoped TiO2 by Sol–gel Route , 2007 .

[44]  G. Sextl,et al.  Environmental assessment of electrically controlled variable light transmittance devices , 2012 .

[45]  Jun Zhang,et al.  An efficient route to a porous NiO/reduced graphene oxide hybrid film with highly improved electrochromic properties. , 2012, Nanoscale.

[46]  P. Patil,et al.  Electrochromic properties of spray deposited TiO2-doped WO3 thin films , 2005 .

[47]  Xiuli Wang,et al.  Hydrothermally synthesized WO3 nanowire arrays with highly improved electrochromic performance , 2011 .

[48]  Qingwen Li,et al.  Aligned coaxial tungsten oxide-carbon nanotube sheet: a flexible and gradient electrochromic film. , 2012, Chemical communications.

[49]  J. Tu,et al.  An all-solid-state electrochromic device based on NiO/WO3 complementary structure and solid hybrid polyelectrolyte , 2009 .

[50]  K. Ho,et al.  Design equations for complementary electrochromic devices: application to the tungsten oxide–Prussian blue system , 2001 .

[51]  S. Komornicki,et al.  Structural properties of TiO2–WO3 thin films prepared by r.f. sputtering , 2004 .

[52]  P. Patil,et al.  Structural, electrical and optical properties of TiO2 doped WO3 thin films , 2005 .

[53]  Yanting Li,et al.  Preparation and characterization of WO3/TiO2 hollow microsphere composites with catalytic activity in dark , 2012 .

[54]  Bobby To,et al.  Crystalline WO3 Nanoparticles for Highly Improved Electrochromic Applications , 2006 .