Cavity-control of interlayer excitons in van der Waals heterostructures
暂无分享,去创建一个
D. Hunger | A. Mohite | A. Högele | H. Yamaguchi | M. Glazov | Robin K. Patel | L. Colombier | Jessica Lindlau | Michael Förg
[1] Christian Schneider,et al. Two-dimensional semiconductors in the regime of strong light-matter coupling , 2018, Nature Communications.
[2] H. Jeng,et al. Negative circular polarization emissions from WSe2/MoSe2 commensurate heterobilayers , 2018, Nature Communications.
[3] Kenji Watanabe,et al. Polarization switching and electrical control of interlayer excitons in two-dimensional van der Waals heterostructures , 2018, Nature Photonics.
[4] W. Yao,et al. Brightened spin-triplet interlayer excitons and optical selection rules in van der Waals heterobilayers , 2018, 1803.01292.
[5] Fengcheng Wu,et al. Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers , 2017, 1710.10278.
[6] Jonghwan Kim,et al. The role of momentum-dark excitons in the elementary optical response of bilayer WSe2 , 2017, Nature Communications.
[7] C. Robert,et al. Identifying optical signatures of momentum-dark excitons in transition metal dichalcogenide monolayers , 2017, 1710.00988.
[8] Kenji Watanabe,et al. Direct exciton emission from atomically thin transition metal dichalcogenide heterostructures near the lifetime limit , 2017, Scientific Reports.
[9] C. Robert,et al. In-Plane Propagation of Light in Transition Metal Dichalcogenide Monolayers: Optical Selection Rules. , 2017, Physical review letters.
[10] F. Jahnke,et al. Long-Lived Direct and Indirect Interlayer Excitons in van der Waals Heterostructures. , 2017, Nano letters.
[11] Q. Xiong,et al. Microsecond dark-exciton valley polarization memory in two-dimensional heterostructures , 2017, Nature Communications.
[12] C. Strunk,et al. Interlayer exciton dynamics in a dichalcogenide monolayer heterostructure , 2017, 1703.00379.
[13] Kenji Watanabe,et al. Approaching the intrinsic photoluminescence linewidth in transition metal dichalcogenide monolayers , 2017, 1702.05857.
[14] C. Robert,et al. Excitonic linewidth approaching the homogeneous limit in MoS2-based van der Waals heterostructures , 2017, 1702.00323.
[15] M. Chou,et al. Interlayer couplings, Moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers , 2017, Science Advances.
[16] Fengcheng Wu,et al. Topological Exciton Bands in Moiré Heterojunctions. , 2016, Physical review letters.
[17] Xiaodong Xu,et al. Topological mosaics in moiré superlattices of van der Waals heterobilayers , 2016, Nature Physics.
[18] J. Warner,et al. Room-temperature exciton-polaritons with two-dimensional WS2 , 2016, Scientific Reports.
[19] C. Schneider,et al. Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer , 2016, Nature Communications.
[20] Eugene Demler,et al. Fermi polaron-polaritons in charge-tunable atomically thin semiconductors , 2016, Nature Physics.
[21] Wang Yao,et al. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure , 2016, Science.
[22] D. Hunger,et al. Cavity-enhanced Raman microscopy of individual carbon nanotubes , 2015, Nature Communications.
[23] P. Ajayan,et al. Two-Step Growth of Two-Dimensional WSe2/MoSe2 Heterostructures. , 2015, Nano letters.
[24] Jr-hau He,et al. Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface , 2015, Science.
[25] Xiaodong Xu,et al. Anomalous Light Cones and Valley Optical Selection Rules of Interlayer Excitons in Twisted Heterobilayers. , 2015, Physical review letters.
[26] Jun Lou,et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. , 2014, Nature materials.
[27] J. Hone,et al. Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS 2 , Mo S e 2 , WS 2 , and WS e 2 , 2014, 1610.04671.
[28] C. S. Chang,et al. Determination of band alignment in the single-layer MoS2/WSe2 heterojunction , 2014, Nature Communications.
[29] Fengnian Xia,et al. Strong light–matter coupling in two-dimensional atomic crystals , 2014, Nature Photonics.
[30] Wang Yao,et al. Spin and pseudospins in layered transition metal dichalcogenides , 2014, Nature Physics.
[31] K. Novoselov,et al. High-temperature superfluidity with indirect excitons in van der Waals heterostructures , 2014, Nature Communications.
[32] Aaron M. Jones,et al. Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures , 2014, Nature Communications.
[33] Lain-Jong Li,et al. Second harmonic generation from artificially stacked transition metal dichalcogenide twisted bilayers. , 2014, ACS nano.
[34] C. Franchini,et al. Stacking effects on the electronic and optical properties of bilayer transition metal dichalcogenides MoS 2 , MoSe 2 , WS 2 , and WSe 2 , 2014 .
[35] J. Reichel,et al. Polariton boxes in a tunable fiber cavity , 2013, 1312.0819.
[36] Lin-wang Wang,et al. Electronic structural Moiré pattern effects on MoS2/MoSe2 2D heterostructures. , 2013, Nano letters.
[37] Jian Zhou,et al. Band offsets and heterostructures of two-dimensional semiconductors , 2013 .
[38] Aaron M. Jones,et al. Electrical control of neutral and charged excitons in a monolayer semiconductor , 2012, Nature Communications.
[39] Wang Yao,et al. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. , 2011, Physical review letters.
[40] Tilo Steinmetz,et al. A fiber Fabry–Perot cavity with high finesse , 2010, 1005.0067.
[41] J. Shan,et al. Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.
[42] A. Splendiani,et al. Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.
[43] L. Andreani,et al. Controlling the dynamics of a coupled atom-cavity system by pure dephasing , 2010, 1002.3753.
[44] Lucio Claudio Andreani,et al. Quantum well excitons in semiconductor microcavities : unified treatment of weak and strong coupling regimes , 1995 .
[45] Q. Xiong,et al. Microsecond dark-exciton valley polarization memory in two-dimensional heterostructures , 2017, Nature Communications.
[46] E. Hinds. Cavity quantum electrodynamics , 1991, Optical Society of America Annual Meeting.