Cavity-control of interlayer excitons in van der Waals heterostructures

[1]  Christian Schneider,et al.  Two-dimensional semiconductors in the regime of strong light-matter coupling , 2018, Nature Communications.

[2]  H. Jeng,et al.  Negative circular polarization emissions from WSe2/MoSe2 commensurate heterobilayers , 2018, Nature Communications.

[3]  Kenji Watanabe,et al.  Polarization switching and electrical control of interlayer excitons in two-dimensional van der Waals heterostructures , 2018, Nature Photonics.

[4]  W. Yao,et al.  Brightened spin-triplet interlayer excitons and optical selection rules in van der Waals heterobilayers , 2018, 1803.01292.

[5]  Fengcheng Wu,et al.  Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers , 2017, 1710.10278.

[6]  Jonghwan Kim,et al.  The role of momentum-dark excitons in the elementary optical response of bilayer WSe2 , 2017, Nature Communications.

[7]  C. Robert,et al.  Identifying optical signatures of momentum-dark excitons in transition metal dichalcogenide monolayers , 2017, 1710.00988.

[8]  Kenji Watanabe,et al.  Direct exciton emission from atomically thin transition metal dichalcogenide heterostructures near the lifetime limit , 2017, Scientific Reports.

[9]  C. Robert,et al.  In-Plane Propagation of Light in Transition Metal Dichalcogenide Monolayers: Optical Selection Rules. , 2017, Physical review letters.

[10]  F. Jahnke,et al.  Long-Lived Direct and Indirect Interlayer Excitons in van der Waals Heterostructures. , 2017, Nano letters.

[11]  Q. Xiong,et al.  Microsecond dark-exciton valley polarization memory in two-dimensional heterostructures , 2017, Nature Communications.

[12]  C. Strunk,et al.  Interlayer exciton dynamics in a dichalcogenide monolayer heterostructure , 2017, 1703.00379.

[13]  Kenji Watanabe,et al.  Approaching the intrinsic photoluminescence linewidth in transition metal dichalcogenide monolayers , 2017, 1702.05857.

[14]  C. Robert,et al.  Excitonic linewidth approaching the homogeneous limit in MoS2-based van der Waals heterostructures , 2017, 1702.00323.

[15]  M. Chou,et al.  Interlayer couplings, Moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers , 2017, Science Advances.

[16]  Fengcheng Wu,et al.  Topological Exciton Bands in Moiré Heterojunctions. , 2016, Physical review letters.

[17]  Xiaodong Xu,et al.  Topological mosaics in moiré superlattices of van der Waals heterobilayers , 2016, Nature Physics.

[18]  J. Warner,et al.  Room-temperature exciton-polaritons with two-dimensional WS2 , 2016, Scientific Reports.

[19]  C. Schneider,et al.  Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer , 2016, Nature Communications.

[20]  Eugene Demler,et al.  Fermi polaron-polaritons in charge-tunable atomically thin semiconductors , 2016, Nature Physics.

[21]  Wang Yao,et al.  Valley-polarized exciton dynamics in a 2D semiconductor heterostructure , 2016, Science.

[22]  D. Hunger,et al.  Cavity-enhanced Raman microscopy of individual carbon nanotubes , 2015, Nature Communications.

[23]  P. Ajayan,et al.  Two-Step Growth of Two-Dimensional WSe2/MoSe2 Heterostructures. , 2015, Nano letters.

[24]  Jr-hau He,et al.  Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface , 2015, Science.

[25]  Xiaodong Xu,et al.  Anomalous Light Cones and Valley Optical Selection Rules of Interlayer Excitons in Twisted Heterobilayers. , 2015, Physical review letters.

[26]  Jun Lou,et al.  Vertical and in-plane heterostructures from WS2/MoS2 monolayers. , 2014, Nature materials.

[27]  J. Hone,et al.  Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS 2 , Mo S e 2 , WS 2 , and WS e 2 , 2014, 1610.04671.

[28]  C. S. Chang,et al.  Determination of band alignment in the single-layer MoS2/WSe2 heterojunction , 2014, Nature Communications.

[29]  Fengnian Xia,et al.  Strong light–matter coupling in two-dimensional atomic crystals , 2014, Nature Photonics.

[30]  Wang Yao,et al.  Spin and pseudospins in layered transition metal dichalcogenides , 2014, Nature Physics.

[31]  K. Novoselov,et al.  High-temperature superfluidity with indirect excitons in van der Waals heterostructures , 2014, Nature Communications.

[32]  Aaron M. Jones,et al.  Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures , 2014, Nature Communications.

[33]  Lain-Jong Li,et al.  Second harmonic generation from artificially stacked transition metal dichalcogenide twisted bilayers. , 2014, ACS nano.

[34]  C. Franchini,et al.  Stacking effects on the electronic and optical properties of bilayer transition metal dichalcogenides MoS 2 , MoSe 2 , WS 2 , and WSe 2 , 2014 .

[35]  J. Reichel,et al.  Polariton boxes in a tunable fiber cavity , 2013, 1312.0819.

[36]  Lin-wang Wang,et al.  Electronic structural Moiré pattern effects on MoS2/MoSe2 2D heterostructures. , 2013, Nano letters.

[37]  Jian Zhou,et al.  Band offsets and heterostructures of two-dimensional semiconductors , 2013 .

[38]  Aaron M. Jones,et al.  Electrical control of neutral and charged excitons in a monolayer semiconductor , 2012, Nature Communications.

[39]  Wang Yao,et al.  Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. , 2011, Physical review letters.

[40]  Tilo Steinmetz,et al.  A fiber Fabry–Perot cavity with high finesse , 2010, 1005.0067.

[41]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[42]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[43]  L. Andreani,et al.  Controlling the dynamics of a coupled atom-cavity system by pure dephasing , 2010, 1002.3753.

[44]  Lucio Claudio Andreani,et al.  Quantum well excitons in semiconductor microcavities : unified treatment of weak and strong coupling regimes , 1995 .

[45]  Q. Xiong,et al.  Microsecond dark-exciton valley polarization memory in two-dimensional heterostructures , 2017, Nature Communications.

[46]  E. Hinds Cavity quantum electrodynamics , 1991, Optical Society of America Annual Meeting.