Linear and sublinear time algorithms for the basis of abelian groups

It is well known that every finite abelian group G can be represented as a direct product of cyclic groups: G ? G 1×G 2× ? ×G t , where each G i is a cyclic group of order p j for some prime p and integer j ? 1. If a i generates the cyclic group of G i , i = 1,2, ? , t, then the elements a 1,a 2, ? , a t are called a basis of G. We show a randomized algorithm such that given a set of generators M = {x 1, ? , x k } for an abelian group G and the prime factorization of order ord(x i ) (i = 1, ? , k), it computes a basis of G in $O(|M|(\log n)^2+\sum_{i=1}^t n_ip_i^{n_i/2})$ time, where n = |G| has prime factorization $p_1^{n_1}p_2^{n_2}\cdots p_t^{n_t}$ (which is not a part of input). This generalizes Buchmann and Schmidt's algorithm that takes $O(|M|\sqrt{|G|})$ time. In another model, all elements in an abelian group are put into a list as a part of input. We obtain an O(n) time deterministic algorithm and a subliner time randomized algorithm for computing a basis of an abelian group.

[1]  Clifford Stein,et al.  Introduction to Algorithms, 2nd edition. , 2001 .

[2]  László Babai,et al.  Randomization in group algorithms: Conceptual questions , 1995, Groups and Computation.

[3]  R. K. Shyamasundar,et al.  Introduction to algorithms , 1996 .

[4]  А Е Китаев,et al.  Квантовые вычисления: алгоритмы и исправление ошибок@@@Quantum computations: algorithms and error correction , 1997 .

[5]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[6]  Kenneth S. Williams,et al.  A deterministic algorithm for solving $n=fu\sp 2+gv\sp 2$ in coprime integers $u$ and $v$ , 1990 .

[7]  Christoph M. Hoffmann,et al.  Group-Theoretic Algorithms and Graph Isomorphism , 1982, Lecture Notes in Computer Science.

[8]  J. Köbler,et al.  The Graph Isomorphism Problem: Its Structural Complexity , 1993 .

[9]  M. I. Kargapolov,et al.  Fundamentals of the theory of groups , 1979 .

[10]  Edlyn Teske,et al.  A space efficient algorithm for group structure computation , 1998, Math. Comput..

[11]  Daniel R. Simon,et al.  On the power of quantum computation , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[12]  Yvo Desmedt,et al.  Perfect Homomorphic Zero-Knowledge Threshold Schemes over any Finite Abelian Group , 1994, SIAM J. Discret. Math..

[13]  Yechezkel Zalcstein,et al.  On Isomorphism Testing of a Class of 2-Nilpotent Groups , 1991, J. Comput. Syst. Sci..

[14]  Charles C. Sims,et al.  Computation with finitely presented groups , 1994, Encyclopedia of mathematics and its applications.

[15]  Gary L. Miller,et al.  On the nlog n isomorphism technique (A Preliminary Report) , 1978, STOC.

[16]  Kenneth S. Williams,et al.  A Deterministic Algorithm for Solving n = fu 2 + gυ 2 in Coprime Integers u and υ , 1990 .

[17]  D. Shanks Class number, a theory of factorization, and genera , 1971 .

[18]  C. Lomont THE HIDDEN SUBGROUP PROBLEM - REVIEW AND OPEN PROBLEMS , 2004, quant-ph/0411037.

[19]  Narayan Vikas An O(n) Algorithm for Abelian p-Group Isomorphism and an O(n log n) Algorithm for Abelian Group Isomorphism , 1996, J. Comput. Syst. Sci..

[20]  Johannes A. Buchmann,et al.  Computing the structure of a finite abelian group , 2005, Math. Comput..

[21]  Alfred Menezes,et al.  Elliptic curve crypto systems , 1995 .

[22]  Gary L. Miller,et al.  Graph isomorphism, general remarks , 1977, STOC '77.

[23]  Helmut Hasse The Class Number , 1980 .

[24]  Telikepalli Kavitha,et al.  Efficient Algorithms for Abelian Group Isomorphism and Related Problems , 2003, FSTTCS.

[25]  R. Tennant Algebra , 1941, Nature.

[26]  Telikepalli Kavitha Linear time algorithms for Abelian group isomorphism and related problems , 2007, J. Comput. Syst. Sci..

[27]  Ian F. Blake,et al.  Elliptic curves in cryptography , 1999 .

[28]  Joseph A. Gallian,et al.  Contemporary Abstract Algebra , 2021 .

[29]  Michele Mosca,et al.  Decomposing finite Abelian groups , 2001, Quantum Inf. Comput..

[30]  Victor S. Miller,et al.  Use of Elliptic Curves in Cryptography , 1985, CRYPTO.

[31]  Johannes A. Buchmann,et al.  On some computational problems in finite abelian groups , 1997, Math. Comput..

[32]  Ronald L. Rivest,et al.  Introduction to Algorithms, Second Edition , 2001 .

[33]  Jacobo Torán,et al.  The graph isomorphism problem , 2020, Commun. ACM.