Linear and sublinear time algorithms for the basis of abelian groups
暂无分享,去创建一个
Bin Fu | Li Chen | Li M. Chen | B. Fu
[1] Clifford Stein,et al. Introduction to Algorithms, 2nd edition. , 2001 .
[2] László Babai,et al. Randomization in group algorithms: Conceptual questions , 1995, Groups and Computation.
[3] R. K. Shyamasundar,et al. Introduction to algorithms , 1996 .
[4] А Е Китаев,et al. Квантовые вычисления: алгоритмы и исправление ошибок@@@Quantum computations: algorithms and error correction , 1997 .
[5] Peter W. Shor,et al. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..
[6] Kenneth S. Williams,et al. A deterministic algorithm for solving $n=fu\sp 2+gv\sp 2$ in coprime integers $u$ and $v$ , 1990 .
[7] Christoph M. Hoffmann,et al. Group-Theoretic Algorithms and Graph Isomorphism , 1982, Lecture Notes in Computer Science.
[8] J. Köbler,et al. The Graph Isomorphism Problem: Its Structural Complexity , 1993 .
[9] M. I. Kargapolov,et al. Fundamentals of the theory of groups , 1979 .
[10] Edlyn Teske,et al. A space efficient algorithm for group structure computation , 1998, Math. Comput..
[11] Daniel R. Simon,et al. On the power of quantum computation , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.
[12] Yvo Desmedt,et al. Perfect Homomorphic Zero-Knowledge Threshold Schemes over any Finite Abelian Group , 1994, SIAM J. Discret. Math..
[13] Yechezkel Zalcstein,et al. On Isomorphism Testing of a Class of 2-Nilpotent Groups , 1991, J. Comput. Syst. Sci..
[14] Charles C. Sims,et al. Computation with finitely presented groups , 1994, Encyclopedia of mathematics and its applications.
[15] Gary L. Miller,et al. On the nlog n isomorphism technique (A Preliminary Report) , 1978, STOC.
[16] Kenneth S. Williams,et al. A Deterministic Algorithm for Solving n = fu 2 + gυ 2 in Coprime Integers u and υ , 1990 .
[17] D. Shanks. Class number, a theory of factorization, and genera , 1971 .
[18] C. Lomont. THE HIDDEN SUBGROUP PROBLEM - REVIEW AND OPEN PROBLEMS , 2004, quant-ph/0411037.
[19] Narayan Vikas. An O(n) Algorithm for Abelian p-Group Isomorphism and an O(n log n) Algorithm for Abelian Group Isomorphism , 1996, J. Comput. Syst. Sci..
[20] Johannes A. Buchmann,et al. Computing the structure of a finite abelian group , 2005, Math. Comput..
[21] Alfred Menezes,et al. Elliptic curve crypto systems , 1995 .
[22] Gary L. Miller,et al. Graph isomorphism, general remarks , 1977, STOC '77.
[23] Helmut Hasse. The Class Number , 1980 .
[24] Telikepalli Kavitha,et al. Efficient Algorithms for Abelian Group Isomorphism and Related Problems , 2003, FSTTCS.
[25] R. Tennant. Algebra , 1941, Nature.
[26] Telikepalli Kavitha. Linear time algorithms for Abelian group isomorphism and related problems , 2007, J. Comput. Syst. Sci..
[27] Ian F. Blake,et al. Elliptic curves in cryptography , 1999 .
[28] Joseph A. Gallian,et al. Contemporary Abstract Algebra , 2021 .
[29] Michele Mosca,et al. Decomposing finite Abelian groups , 2001, Quantum Inf. Comput..
[30] Victor S. Miller,et al. Use of Elliptic Curves in Cryptography , 1985, CRYPTO.
[31] Johannes A. Buchmann,et al. On some computational problems in finite abelian groups , 1997, Math. Comput..
[32] Ronald L. Rivest,et al. Introduction to Algorithms, Second Edition , 2001 .
[33] Jacobo Torán,et al. The graph isomorphism problem , 2020, Commun. ACM.