Three-dimensional Nanotube Networks and a New Horizon of Applications

[1]  M. Terrones,et al.  Determination of the stacking order of curved few-layered graphene systems. , 2012, Nanoscale.

[2]  P. Ajayan,et al.  Covalently bonded three-dimensional carbon nanotube solids via boron induced nanojunctions , 2012, Scientific Reports.

[3]  M. Maharbiz,et al.  A highly elastic, capacitive strain gauge based on percolating nanotube networks. , 2012, Nano letters.

[4]  Ning Hu,et al.  Piezoresistive Strain Sensors Made from Carbon Nanotubes Based Polymer Nanocomposites , 2011, Sensors.

[5]  A. El Mel,et al.  Hierarchical carbon nanostructure design: ultra-long carbon nanofibers decorated with carbon nanotubes , 2011, Nanotechnology.

[6]  Hongwei Zhu,et al.  Recyclable carbon nanotube sponges for oil absorption , 2011 .

[7]  Amit Kumar,et al.  Ultralight multiwalled carbon nanotube aerogel. , 2010, ACS nano.

[8]  P. Ordejón,et al.  Electronic transport between graphene layers covalently connected by carbon nanotubes. , 2010, ACS nano.

[9]  M. Pyo,et al.  Composites of low bandgap conducting polymer-wrapped MWNT and poly(methyl methacrylate) for low perc , 2010 .

[10]  Won Ho Jo,et al.  Fabrication of highly conductive and transparent thin films from single-walled carbon nanotubes using a new non-ionic surfactant via spin coating. , 2010, ACS nano.

[11]  Niina Halonen,et al.  Electrical transport and field-effect transistors using inkjet-printed SWCNT films having different functional side groups. , 2010, ACS nano.

[12]  Chongwu Zhou,et al.  The race to replace tin-doped indium oxide: which material will win? , 2010, ACS nano.

[13]  F. Banhart,et al.  Multibranched Junctions of Carbon Nanotubes via Cobalt Particles , 2009 .

[14]  B. Sumpter,et al.  The Role of Sulfur in the Synthesis of Novel Carbon Morphologies: From Covalent Y‐Junctions to Sea‐Urchin‐Like Structures , 2009 .

[15]  Y. Gartstein,et al.  Giant-Stroke, Superelastic Carbon Nanotube Aerogel Muscles , 2009, Science.

[16]  J. M. Kim,et al.  Grow Single-Walled Carbon Nanotubes Cross-Bar in One Batch , 2009 .

[17]  D. M. Porterfield,et al.  Electrochemical biosensor of nanocube-augmented carbon nanotube networks. , 2009, ACS nano.

[18]  N. Kotov,et al.  Smart electronic yarns and wearable fabrics for human biomonitoring made by carbon nanotube coating with polyelectrolytes. , 2008, Nano letters.

[19]  A. Reina,et al.  In-situ sample rotation as a tool to understand chemical vapor deposition growth of long aligned carbon nanotubes. , 2008, Nano letters.

[20]  B. Sumpter,et al.  An atomistic branching mechanism for carbon nanotubes: sulfur as the triggering agent. , 2008, Angewandte Chemie.

[21]  L. Dao,et al.  New Class of Carbon‐Nanotube Aerogel Electrodes for Electrochemical Power Sources , 2008 .

[22]  I. László Construction of atomic arrangement for carbon nanotube junctions , 2007 .

[23]  Pooi See Lee,et al.  DNA sensing by field-effect transistors based on networks of carbon nanotubes. , 2007, Journal of the American Chemical Society.

[24]  John A Rogers,et al.  Printed multilayer superstructures of aligned single-walled carbon nanotubes for electronic applications. , 2007, Nano letters.

[25]  M. Terrones,et al.  Production and characterization of coaxial nanotube junctions and networks of CNx/CNT. , 2007, Nano letters.

[26]  D. Milkie,et al.  Carbon Nanotube Aerogels , 2007 .

[27]  M. Terrones,et al.  Covalent 2D and 3D networks from 1D nanostructures: designing new materials. , 2007, Nano letters.

[28]  K. Thomas,et al.  Hydrogen adsorption and storage on porous materials , 2007 .

[29]  T. Chou,et al.  Carbon Nanotube Networks: Sensing of Distributed Strain and Damage for Life Prediction and Self Healing , 2006 .

[30]  Ana M. Benito,et al.  Towards helical and Y-shaped carbon nanotubes: the role of sulfur in CVD processes , 2006 .

[31]  F. Wei,et al.  Growth of branch carbon nanotubes on carbon nanotubes as support , 2006 .

[32]  A. Ismach,et al.  Orthogonal self-assembly of carbon nanotube crossbar architectures by simultaneous graphoepitaxy and field-directed growth. , 2006, Nano letters.

[33]  John A. Rogers,et al.  Highly Bendable, Transparent Thin‐Film Transistors That Use Carbon‐Nanotube‐Based Conductors and Semiconductors with Elastomeric Dielectrics , 2006 .

[34]  Ado Jorio,et al.  Geometric and electronic structure of carbon nanotube networks: ‘super’-carbon nanotubes , 2006 .

[35]  N. Aluru,et al.  Ion separation using a Y-junction carbon nanotube , 2005 .

[36]  Chao Li,et al.  Complementary detection of prostate-specific antigen using In2O3 nanowires and carbon nanotubes. , 2005, Journal of the American Chemical Society.

[37]  G. U. Kulkarni,et al.  Nature and electronic properties of Y-junctions in CNTs and N-doped CNTs obtained by the pyrolysis of organometallic precursors , 2005 .

[38]  K. An,et al.  Nickel oxide/carbon nanotubes nanocomposite for electrochemical capacitance , 2005 .

[39]  T. Tseng,et al.  Characteristics and Electrochemical Performance of Supercapacitors with Manganese Oxide-Carbon Nanotube Nanocomposite Electrodes , 2005 .

[40]  M. Endo,et al.  Nanotechnology: ‘Buckypaper’ from coaxial nanotubes , 2005, Nature.

[41]  L. Segev,et al.  Atomic-step-templated formation of single wall carbon nanotube patterns. , 2004, Angewandte Chemie.

[42]  S. Ciraci,et al.  Theoretical study of crossed and parallel carbon nanotube junctions and three-dimensional grid structures , 2004 .

[43]  A. Thie,et al.  Fabrication and Biocompatibility of Carbon Nanotube-Based 3D Networks as Scaffolds for Cell Seeding and Growth , 2004 .

[44]  R. Li,et al.  3D carbon nanotube network based on a hierarchical structure grown on carbon paper backing , 2004 .

[45]  P. Ajayan,et al.  Capillarity-driven assembly of two-dimensional cellular carbon nanotube foams , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Jin Zhai,et al.  Self-assembly of large-scale micropatterns on aligned carbon nanotube films. , 2004, Angewandte Chemie.

[47]  M. Terrones Science and Technology of the Twenty-First Century: Synthesis, Properties, and Applications of Carbon Nanotubes , 2003 .

[48]  R. A. McGill,et al.  Nerve agent detection using networks of single-walled carbon nanotubes , 2003 .

[49]  Bin Chen,et al.  Carbon nanotube networks by chemical vapor deposition , 2003 .

[50]  J. Charlier,et al.  Intrinsic electron transport properties of carbon nanotube Y-junctions , 2002 .

[51]  Toshio Ogino,et al.  Growth of suspended carbon nanotube networks on 100-nm-scale silicon pillars , 2002 .

[52]  Charles M. Lieber,et al.  Vectorial Growth of Metallic and Semiconducting Single-Wall Carbon Nanotubes , 2002 .

[53]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[54]  P. Ajayan,et al.  Molecular junctions by joining single-walled carbon nanotubes. , 2002, Physical review letters.

[55]  Charles M. Lieber,et al.  Logic Gates and Computation from Assembled Nanowire Building Blocks , 2001, Science.

[56]  G. Froudakis Why Alkali-Metal-Doped Carbon Nanotubes Possess High Hydrogen Uptake , 2001 .

[57]  C. N. R. Rao,et al.  Y-junction carbon nanotubes , 2000 .

[58]  Charles M. Lieber,et al.  Carbon nanotube-based nonvolatile random access memory for molecular computing , 2000, Science.

[59]  Zhen Yao,et al.  Carbon nanotube intramolecular junctions , 1999, Nature.

[60]  C. Papadopoulos,et al.  Nanoelectronics: Growing Y-junction carbon nanotubes , 1999, Nature.

[61]  P. Lambin,et al.  Structural properties of junctions between two carbon nanotubes , 1999 .

[62]  L. Chico,et al.  Carbon-Nanotube-Based Quantum Dot , 1998 .

[63]  Madhu Menon,et al.  Carbon Nanotube ``T Junctions'': Nanoscale Metal-Semiconductor-Metal Contact Devices , 1997 .

[64]  M. Tsukada,et al.  CONDUCTANCE OF NANOTUBE JUNCTIONS AND ITS SCALING LAW , 1997 .

[65]  Mauricio Terrones,et al.  Graphitic structures: from planar to spheres, toroids and helices , 1996, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[66]  Benedict,et al.  Quantum conductance of carbon nanotubes with defects. , 1996, Physical review. B, Condensed matter.

[67]  Benedict,et al.  Pure carbon nanoscale devices: Nanotube heterojunctions. , 1996, Physical review letters.

[68]  J. Nagy,et al.  Structural and electronic properties of bent carbon nanotubes , 1995 .

[69]  M. Kim,et al.  The interplay between sulfur adsorption and carbon deposition on cobalt catalysts , 1993 .

[70]  Alan L. Mackay,et al.  Triply periodic minimal surfaces decorated with curved graphite , 1993 .

[71]  Huang,et al.  Electronic properties of negative-curvature periodic graphitic carbon surfaces. , 1993, Physical review. B, Condensed matter.

[72]  M. Dresselhaus,et al.  Topological defects in large fullerenes , 1992 .

[73]  Riichiro Saito,et al.  Electronic structure of chiral graphene tubules , 1992 .

[74]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[75]  A. Mackay,et al.  Diamond from graphite , 1991, Nature.

[76]  D. Brenner,et al.  Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. , 1990, Physical review. B, Condensed matter.

[77]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[78]  J. Oudar Sulfur Adsorption and Poisoning of Metallic Catalysts , 1981 .

[79]  A. Oberlin,et al.  Filamentous growth of carbon through benzene decomposition , 1976 .

[80]  Yongping Zheng,et al.  Graphene-nanotube 3D networks: intriguing thermal and mechanical properties , 2012 .

[81]  Youngseok Oh,et al.  Transparent conductive film fabrication using intercalating silver nanoparticles within carbon nanotube layers. , 2011, Journal of nanoscience and nanotechnology.

[82]  T. Ebbesen,et al.  Exceptionally high Young's modulus observed for individual carbon nanotubes , 1996, Nature.

[83]  M. Terrones,et al.  Beyond C60: graphite structures for the future , 1995 .

[84]  Gary G. Tibbetts,et al.  Role of sulfur in the production of carbon fibers in the vapor phase , 1994 .

[85]  K. Kusakabe,et al.  Effect of sulphur on formation of vapour-grown carbon fibre , 1994 .

[86]  Alan L. Mackay,et al.  The geometry of hypothetical curved graphite structures , 1992 .

[87]  R. C. Furneaux,et al.  The formation of controlled-porosity membranes from anodically oxidized aluminium , 1989, Nature.

[88]  M. Egashira,et al.  Whiskerization of carbon beads by vapor phase growth of carbon fibers to obtain sea urchin-type particles , 1983 .