Inverse tunneling estimates and applications to the study of spectral statistics of random operators on the real line

We present a proof of Minami type estimates for one dimensional random Schr\"odinger operators valid at all energies in the localization regime provided a Wegner estimate is known to hold. The Minami type estimates are then applied to various models to obtain results on their spectral statistics. The heuristics underlying our proof of Minami type estimates is that close by eigenvalues of a one-dimensional Schr\"odinger operator correspond either to eigenfunctions that live far away from each other in space or they come from some tunneling phenomena. In the second case, one can undo the tunneling and thus construct quasi-modes that live far away from each other in space.

[1]  Fr'ed'eric Klopp,et al.  Enhanced Wegner and Minami Estimates and Eigenvalue Statistics of Random Anderson Models at Spectral Edges , 2011, Annales Henri Poincaré.

[2]  N. Minami Energy level statistics : a formulation and some examples (Spectra of Random Operators and Related Topics) , 2011 .

[3]  A. Klein,et al.  A comprehensive proof of localization for continuous Anderson models with singular random potentials , 2011, 1105.0213.

[4]  S. Fishman,et al.  Eigenvalue repulsion estimates and some applications for the one-dimensional Anderson model , 2011, 1102.2109.

[5]  F. Klopp Asymptotic ergodicity of the eigenvalues of random operators in the localized phase , 2010, 1012.0831.

[6]  Fr'ed'eric Klopp,et al.  Spectral statistics for random Schr\"odinger operators in the localized regime , 2010, 1011.1832.

[7]  M. Loss,et al.  Localization for the random displacement model , 2010, 1007.2483.

[8]  F. Klopp Decorrelation Estimates for the Eigenlevels of the Discrete Anderson Model in the Localized Regime , 2010, 1004.1261.

[9]  D. Damanik,et al.  A continuum version of the Kunz–Souillard approach to localization in one dimension , 2009, 0912.3568.

[10]  Robert Sims,et al.  A note on fractional moments for the one-dimensional continuum Anderson model , 2009, 0907.4771.

[11]  H. Boumaza Localization for a Matrix-valued Anderson Model , 2009, 0902.1628.

[12]  M. Loss,et al.  Low energy properties of the random displacement model , 2008, 0808.0670.

[13]  J. Combes,et al.  Poisson Statistics for Eigenvalues of Continuum Random Schr , 2008, 0807.0455.

[14]  J. Combes,et al.  Generalized Eigenvalue-Counting Estimates for the Anderson Model , 2008, 0804.3202.

[15]  A. Klein Multiscale Analysis and Localization of Random Operators , 2007, 0708.2292.

[16]  N. Minami Theory of point processes and some basic notions in energy level statistics , 2007 .

[17]  J. Bellissard,et al.  Correlation Estimates in the Anderson Model , 2007, math-ph/0703058.

[18]  G. M. Graf,et al.  A Remark on the Estimate of a Determinant by Minami , 2007 .

[19]  J. Combes,et al.  An optimal Wegner estimate and its application to the global continuity of the integrated density of states for random Schrödinger operators , 2006, math-ph/0605029.

[20]  A. Klein,et al.  Localization at low energies for attractive Poisson random Schr , 2006, math-ph/0603035.

[21]  A. Klein,et al.  Localization for Schrödinger operators with Poisson random potential , 2006, math-ph/0603033.

[22]  J. Bourgain,et al.  On localization in the continuous Anderson-Bernoulli model in higher dimension , 2005 .

[23]  P. Hislop,et al.  The Integrated Density of States for Some Random Operators with Nonsign Definite Potentials , 2002 .

[24]  G. Stolz,et al.  Two-parameter spectral averaging and localization for non-monotonic random Schrödinger operators , 2000 .

[25]  D. Damanik,et al.  LOCALIZATION FOR ONE DIMENSIONAL, CONTINUUM, BERNOULLI-ANDERSON MODELS , 2000, math-ph/0010016.

[26]  Robert Sims,et al.  Localization in One Dimensional Random Media:¶A Scattering Theoretic Approach , 2000 .

[27]  F. Klopp Localization for some continuous random Schrödinger operators , 1995 .

[28]  Alexander Figotin,et al.  Spectra of Random and Almost-Periodic Operators , 1991 .

[29]  J. Combes,et al.  Krein's formula and one-dimensional multiple-well , 1983 .

[30]  J. Combes,et al.  Convergent expansions for tunneling , 1983 .

[31]  J. Combes,et al.  Hölder continuity of the integrated density of states for some random operators at all energies , 2003 .

[32]  Peter Stollmann,et al.  Caught by disorder , 2001 .

[33]  Nariyuki Minami,et al.  Local fluctuation of the spectrum of a multidimensional Anderson tight binding model , 1996 .

[34]  G. Stolz Localization for random Schrödinger operators with Poisson potential , 1995 .

[35]  R. Carmona,et al.  Spectral Theory of Random Schrödinger Operators , 1990 .

[36]  Erich Müller-Pfeiffer,et al.  Spectral theory of ordinary differential operators , 1981 .

[37]  E. Harrell Double Wells , 1980 .

[38]  E. Coddington,et al.  Spectral theory of ordinary differential operators , 1975 .