Preference Completion: Large-scale Collaborative Ranking from Pairwise Comparisons

In this paper we consider the collaborative ranking setting: a pool of users each provides a small number of pairwise preferences between d possible items; from these we need to predict each users preferences for items they have not yet seen. We do so by fitting a rank r score matrix to the pairwise data, and provide two main contributions: (a) we show that an algorithm based on convex optimization provides good generalization guarantees once each user provides as few as O(r log2 d) pairwise comparisons - essentially matching the sample complexity required in the related matrix completion setting (which uses actual numerical as opposed to pairwise information), and (b) we develop a large-scale non-convex implementation, which we call AltSVM, that trains a factored form of the matrix via alternating minimization (which we show reduces to alternating SVM problems), and scales and parallelizes very well to large problem settings. It also outperforms common baselines on many moderately large popular collaborative filtering datasets in both NDCG and in other measures of ranking performance.

[1]  R. Srikant,et al.  Jointly clustering rows and columns of binary matrices: algorithms and trade-offs , 2013, SIGMETRICS '14.

[2]  Robert D. Nowak,et al.  Active Ranking using Pairwise Comparisons , 2011, NIPS.

[3]  Lars Schmidt-Thieme,et al.  BPR: Bayesian Personalized Ranking from Implicit Feedback , 2009, UAI.

[4]  Chong Wang,et al.  Latent Collaborative Retrieval , 2012, ICML.

[5]  R. A. Bradley,et al.  RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS THE METHOD OF PAIRED COMPARISONS , 1952 .

[6]  Maksims Volkovs,et al.  Collaborative Ranking With 17 Parameters , 2012, NIPS.

[7]  Nebojsa Jojic,et al.  Efficient Ranking from Pairwise Comparisons , 2013, ICML.

[8]  Jinfeng Yi,et al.  Inferring Users' Preferences from Crowdsourced Pairwise Comparisons: A Matrix Completion Approach , 2013, HCOMP.

[9]  Ewout van den Berg,et al.  1-Bit Matrix Completion , 2012, ArXiv.

[10]  Inderjit S. Dhillon,et al.  PASSCoDe: Parallel ASynchronous Stochastic dual Co-ordinate Descent , 2015, ICML.

[11]  Thorsten Joachims,et al.  Optimizing search engines using clickthrough data , 2002, KDD.

[12]  Stephen J. Wright,et al.  Hogwild: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent , 2011, NIPS.

[13]  R. Duncan Luce,et al.  Individual Choice Behavior , 1959 .

[14]  Alexander J. Smola,et al.  Maximum Margin Matrix Factorization for Collaborative Ranking , 2007 .

[15]  Shai Shalev-Shwartz,et al.  Stochastic dual coordinate ascent methods for regularized loss , 2012, J. Mach. Learn. Res..

[16]  Yoav Seginer,et al.  The Expected Norm of Random Matrices , 2000, Combinatorics, Probability and Computing.

[17]  Thore Graepel,et al.  Large Margin Rank Boundaries for Ordinal Regression , 2000 .

[18]  S. V. N. Vishwanathan,et al.  Ranking via Robust Binary Classification and Parallel Parameter Estimation in Large-Scale Data , 2014, ArXiv.

[19]  Felix Schlenk,et al.  Proof of Theorem 3 , 2005 .

[20]  Yifan Hu,et al.  Collaborative Filtering for Implicit Feedback Datasets , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[21]  Ralf Herbrich,et al.  Large margin rank boundaries for ordinal regression , 2000 .

[22]  Yu Lu,et al.  Individualized rank aggregation using nuclear norm regularization , 2014, 2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[23]  Chih-Jen Lin,et al.  A dual coordinate descent method for large-scale linear SVM , 2008, ICML '08.

[24]  Inderjit S. Dhillon,et al.  NOMAD: Nonlocking, stOchastic Multi-machine algorithm for Asynchronous and Decentralized matrix completion , 2013, Proc. VLDB Endow..

[25]  Devavrat Shah,et al.  Iterative ranking from pair-wise comparisons , 2012, NIPS.

[26]  Martha Larson,et al.  CLiMF: Collaborative Less-Is-More Filtering , 2013, IJCAI.

[27]  Tie-Yan Liu,et al.  Learning to rank for information retrieval , 2009, SIGIR.

[28]  Samy Bengio,et al.  Local collaborative ranking , 2014, WWW.

[29]  Tommi S. Jaakkola,et al.  Maximum-Margin Matrix Factorization , 2004, NIPS.

[30]  Suhrid Balakrishnan,et al.  Collaborative ranking , 2012, WSDM '12.

[31]  S. V. N. Vishwanathan,et al.  Ranking via Robust Binary Classification , 2014, NIPS.

[32]  Bruce E. Hajek,et al.  Minimax-optimal Inference from Partial Rankings , 2014, NIPS.

[33]  Min Zhao,et al.  Probabilistic latent preference analysis for collaborative filtering , 2009, CIKM.

[34]  Roman Vershynin,et al.  Introduction to the non-asymptotic analysis of random matrices , 2010, Compressed Sensing.

[35]  Nir Ailon,et al.  Active Learning Ranking from Pairwise Preferences with Almost Optimal Query Complexity , 2011, NIPS.