Fast Computation of Singular Oscillatory Fourier Transforms
暂无分享,去创建一个
[1] L. Filon. III.—On a Quadrature Formula for Trigonometric Integrals. , 1930 .
[2] Yudell L. Luke,et al. On the computation of oscillatory integrals , 1954, Mathematical Proceedings of the Cambridge Philosophical Society.
[3] A. Erdélyi,et al. Asymptotic Representations of Fourier Integrals and the Method of Stationary Phase , 1955 .
[4] E. A. Flinn. A Modification of Filon's Method of Numerical Integration , 1960, JACM.
[5] C. W. Clenshaw,et al. A method for numerical integration on an automatic computer , 1960 .
[6] By J. N. Lyness. Adjusted forms of the Fourier coefficient asymptotic expansion and applications in numerical quadrature , 1971 .
[7] Henry C. Thacher,et al. Applied and Computational Complex Analysis. , 1988 .
[8] David Levin,et al. Procedures for computing one- and two-dimensional integrals of functions with rapid irregular oscillations , 1982 .
[9] E. Stein,et al. Singular integrals related to the Radon transform and boundary value problems. , 1983, Proceedings of the National Academy of Sciences of the United States of America.
[10] Josef Stoer,et al. Numerische Mathematik 1 , 1989 .
[11] M. Hamed,et al. A Numerical Integration Formula for the Solution of the Singular Integral Equation for Classical Crack Problems in Plane and Antiplane Elasticity , 1991 .
[12] David Levin,et al. Analysis of a collocation method for integrating rapidly oscillatory functions , 1997 .
[13] J. R. Webster,et al. A method to generate generalized quadrature rule for oscillatory integrals , 2000 .
[14] Roderick Wong,et al. Asymptotic approximations of integrals , 1989, Classics in applied mathematics.
[15] A. Iserles,et al. Efficient quadrature of highly oscillatory integrals using derivatives , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[16] Sheehan Olver,et al. Moment-free numerical integration of highly oscillatory functions , 2006 .
[17] A class of oscillatory singular integrals on triebel-lizorkin spaces , 2006 .
[18] G. Evans,et al. Evaluating infinite range oscillatory integrals using generalised quadrature methods , 2007 .
[19] Ivan G. Graham,et al. A hybrid numerical-asymptotic boundary integral method for high-frequency acoustic scattering , 2007, Numerische Mathematik.
[20] S. Xiang. Efficient Filon-type methods for $$\int_a^bf(x)\,{\rm e}^{{\rm i}\omega g(x)}\,{\rm d}x$$ , 2007 .
[21] James N. Lyness. Numerical evaluation of a fixed-amplitude variable-phase integral , 2008, Numerical Algorithms.
[22] J. N. Lyness,et al. Asymptotic expansions for oscillatory integrals using inverse functions , 2009 .
[23] Shuhuang Xiang,et al. On the evaluation of Cauchy principal value integrals of oscillatory functions , 2010, J. Comput. Appl. Math..
[24] Xiaojun Chen,et al. Error bounds for approximation in Chebyshev points , 2010, Numerische Mathematik.
[25] Shuhuang Xiang,et al. On the calculation of highly oscillatory integrals with an algebraic singularity , 2010, Appl. Math. Comput..
[26] Ivan G. Graham,et al. Stability and error estimates for Filon–Clenshaw–Curtis rules for highly oscillatory integrals , 2011 .
[27] Shuhuang Xiang,et al. Efficient integration for a class of highly oscillatory integrals , 2011, Appl. Math. Comput..
[28] Shuhuang Xiang,et al. Clenshaw–Curtis–Filon-type methods for highly oscillatory Bessel transforms and applications , 2011 .
[29] Shuhuang Xiang,et al. Computation of integrals with oscillatory and singular integrands using Chebyshev expansions , 2013, J. Comput. Appl. Math..