Aptamer based biosensor platforms for neurotransmitters analysis

[1]  A. Salimi,et al.  Advances in 2d Based Field Effect Transistors as Biosensing Platforms: From Principle to Biomedical Applications , 2022, Microchemical Journal.

[2]  J. Marty,et al.  Recent Advances in Electrochemical Aptasensors for Detection of Biomarkers , 2022, Pharmaceuticals.

[3]  M. Orazem,et al.  Impedance Analysis of Electrochemical Systems. , 2022, Chemical reviews.

[4]  R. Lai,et al.  Multiplexed Monitoring of Neurochemicals via Electrografting-Enabled Site-Selective Functionalization of Aptamers on Field-Effect Transistors. , 2022, Analytical chemistry.

[5]  U. Frey,et al.  Multisite Dopamine Sensing With Femtomolar Resolution Using a CMOS Enabled Aptasensor Chip , 2022, Frontiers in Neuroscience.

[6]  A. Grumezescu,et al.  Neurotransmitters—Key Factors in Neurological and Neurodegenerative Disorders of the Central Nervous System , 2022, International journal of molecular sciences.

[7]  Jiaxing Zhang,et al.  A facile aptamer-based sensing strategy for dopamine detection through the fluorescence energy transfer between dye and single-wall carbon nanohorns. , 2022, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[8]  Xiaoxia Li,et al.  Sensitive and selective electrogenerated chemiluminescence aptasensing method for the determination of dopamine based on target-induced conformational displacement. , 2022, Bioelectrochemistry.

[9]  Yixin Wu,et al.  Implantable Aptamer-Graphene Microtransistors for Real-Time Monitoring of Neurochemical Release in Vivo. , 2022, Nano letters.

[10]  Nandi Zhou,et al.  Fluorescent Aptasensor for Highly Specific Detection of ATP Using a Newly Screened Aptamer , 2022, Sensors.

[11]  Ariel L. Furst,et al.  Perspective—Electrochemical Sensors for Neurotransmitters and Psychiatrics: Steps toward Physiological Mental Health Monitoring , 2022, Journal of The Electrochemical Society.

[12]  D. Mayer,et al.  DNA aptamer selection for SARS-CoV-2 spike glycoprotein detection , 2022, Analytical Biochemistry.

[13]  Zhuo Zou,et al.  Methylene blue intercalated aptamer to amplify signals toward sensitively electrochemical detection of dopamine released from living Parkinson's disease model cells , 2022, Sensors and Actuators Reports.

[14]  S. M. Taghdisi,et al.  Recent achievements and advances in optical and electrochemical aptasensing detection of ATP based on quantum dots. , 2021, Talanta.

[15]  P. Lugli,et al.  Electrolyte-gated carbon nanotube field-effect transistor-based biosensors: Principles and applications , 2021, Applied Physics Reviews.

[16]  D. Mayer,et al.  Highly selective and sensitive detection of glutamate by an electrochemical aptasensor , 2021, Analytical and Bioanalytical Chemistry.

[17]  M. Eisenstein,et al.  A system for multiplexed selection of aptamers with exquisite specificity without counterselection , 2021, bioRxiv.

[18]  H. Monbouquette,et al.  Implantable aptamer–field-effect transistor neuroprobes for in vivo neurotransmitter monitoring , 2021, Science advances.

[19]  S. Krylov,et al.  Quantitative Characterization of Partitioning in Selection of DNA Aptamers for Protein Targets by Capillary Electrophoresis. , 2021, Analytical chemistry.

[20]  Bajramshahe Shkodra,et al.  Aptamer-modified biosensors to visualize neurotransmitter flux , 2021, Journal of Neuroscience Methods.

[21]  G. Catanante,et al.  A Simple Fluorescent Aptasensing Platform Based on Graphene Oxide for Dopamine Determination , 2021, Applied Biochemistry and Biotechnology.

[22]  J. C. Abrego-Martinez,et al.  Selection of Highly Specific Aptamers by Graphene Oxide-SELEX to Ultrasensitive Label-Free Impedimetric Biosensor Development for Glyphosate Detection , 2021, ACS Agricultural Science & Technology.

[23]  G. Gadermaier,et al.  SELEX: Critical factors and optimization strategies for successful aptamer selection , 2021, Biotechnology and applied biochemistry.

[24]  K. Tam,et al.  Pathological mechanisms and therapeutic strategies for Alzheimer’s disease , 2021, Neural regeneration research.

[25]  Qinfeng Xu,et al.  3'-Terminal Repair-Powered Dendritic Nanoassembly of Polyadenine Molecular Beacons for One-Step Quantification of Alkaline Phosphatase in Human Serum. , 2021, Analytical chemistry.

[26]  Yan Zeng,et al.  Facile electrochemical/colorimetric platform based on electrochromic tungsten oxide film for sensitive/visual adenosine triphosphate detection , 2021, Sensors and Actuators B: Chemical.

[27]  Yuanjian Zhang,et al.  Recent advances of functional nucleic acids-based electrochemiluminescent sensing. , 2021, Biosensors & bioelectronics.

[28]  Jialei Bai,et al.  A fluorescence aptasensor for the sensitive detection of T-2 toxin based on FRET by adjusting the surface electric potentials of UCNPs and MIL-101. , 2021, Analytica chimica acta.

[29]  A. Yetisen,et al.  Brain neurochemical monitoring. , 2021, Biosensors & bioelectronics.

[30]  V. Préat,et al.  An overview of in vitro, ex vivo and in vivo models for studying the transport of drugs across intestinal barriers. , 2021, Advanced drug delivery reviews.

[31]  Shan-Du Liu,et al.  State-of-the-art progress of switch fluorescence biosensors based on metal-organic frameworks and nucleic acids , 2021, Microchimica Acta.

[32]  Hongyuan Chen,et al.  Photocontrolled Nanopipette Biosensor for ATP Gradient Electroanalysis of Single Living Cells. , 2021, ACS sensors.

[33]  J. Hou,et al.  Comparison of Two DNA Aptamers for Dopamine Using Homogeneous Binding Assays , 2021, Chembiochem : a European journal of chemical biology.

[34]  Congcong Zhang,et al.  Ultrasensitive and Reliable Organic Field-Effect Transistor-Based Biosensors in Early Liver Cancer Diagnosis. , 2021, Analytical chemistry.

[35]  F. Gage,et al.  Sensing serotonin secreted from human serotonergic neurons using aptamer-modified nanopipettes , 2021, Molecular Psychiatry.

[36]  Yi Xiao,et al.  Advances and Challenges in Small-Molecule DNA Aptamer Isolation, Characterization, and Sensor Development. , 2021, Angewandte Chemie.

[37]  Tianyan You,et al.  Inner filter effect-modulated ratiometric fluorescence aptasensor based on competition strategy for zearalenone detection in cereal crops: Using mitoxantrone as quencher of CdTe QDs@SiO2. , 2021, Food chemistry.

[38]  Huisheng Peng,et al.  Implantable Fiber Biosensors Based on Carbon Nanotubes , 2021 .

[39]  Hongyuan Chen,et al.  Target-Triggered Assembly in a Nanopipette for Electrochemical Single-Cell Analysis. , 2020, Analytical chemistry.

[40]  L. Cunci,et al.  Measurement of Neuropeptide Y Using Aptamer-Modified Microelectrodes by Electrochemical Impedance Spectroscopy. , 2020, Analytical chemistry.

[41]  Sahil Ahuja,et al.  Förster resonance energy transfer (FRET) and applications thereof. , 2020, Analytical methods : advancing methods and applications.

[42]  Lingyan Feng,et al.  A reusable neurotransmitter aptasensor for the sensitive detection of serotonin. , 2020, Analytica chimica acta.

[43]  Rongrong Yuan,et al.  Crystal engineering of MOF@COF core-shell composites for ultra-sensitively electrochemical detection , 2020 .

[44]  Juewen Liu,et al.  Controlling dopamine binding by the new aptamer for a FRET-based biosensor. , 2020, Biosensors & bioelectronics.

[45]  Z. Nie,et al.  Live-Cell Imaging of Neurotransmitter Release with a Cell-Surface-Anchored DNA-Nanoprism Fluorescent Sensor. , 2020, Analytical chemistry.

[46]  Bandhan Chatterjee,et al.  GOLD SELEX: a novel SELEX approach for the development of high-affinity aptamers against small molecules without residual activity , 2020, Microchimica Acta.

[47]  Mohamed M. El-wekil,et al.  Dual-recognition molecularly imprinted aptasensor based on gold nanoparticles decorated carboxylated carbon nanotubes for highly selective and sensitive determination of histamine in different matrices. , 2020, Analytica chimica acta.

[48]  Mohammad Hasanzadeh,et al.  Biosensing based on field-effect transistors (FET): Recent progress and challenges , 2020, TrAC Trends in Analytical Chemistry.

[49]  Jeong-Woo Choi,et al.  In Situ Detection of Neurotransmitters from Stem Cell-derived Neural Interface at the Single-Cell Level via Graphene-Hybrid SERS Nanobiosensing. , 2020, Nano letters.

[50]  Ashok Mulchandani,et al.  Non-Carbon 2D Materials-Based Field-Effect Transistor Biosensors: Recent Advances, Challenges, and Future Perspectives , 2020, Sensors.

[51]  Chongwu Zhou,et al.  Flexible Multiplexed In2O3 Nanoribbon Aptamer-Field-Effect Transistors for Biosensing , 2020, iScience.

[52]  M. El-Shahawi,et al.  Gold nanoparticle aptamer assay for the determination of histamine in foodstuffs , 2020, Microchimica Acta.

[53]  Jingbo Hu,et al.  A Generalizable and Noncovalent Strategy of Interfacing Aptamers with Microelectrode for Selective Sensing of Neurotransmitter In Vivo. , 2020, Angewandte Chemie.

[54]  Ping Wang,et al.  A novel portable biosensor based on aptamer functionalized gold nanoparticles for adenosine detection. , 2020, Analytica chimica acta.

[55]  D. Mayer,et al.  Polyethylene glycol-mediated blocking and monolayer morphology of an electrochemical aptasensor for malaria biomarker detection in human serum. , 2020, Bioelectrochemistry.

[56]  Il Keun Kwon,et al.  Skin-Integrated Wearable Systems and Implantable Biosensors: A Comprehensive Review , 2020, Biosensors.

[57]  Juewen Liu,et al.  Dopamine and Melamine Binding to Gold Nanoparticles Dominates Their Aptamer-based Label-free Colorimetric Sensing. , 2020, Analytical chemistry.

[58]  D. Mayer,et al.  Label-Free Split Aptamer Sensor for Femtomolar Detection of Dopamine by Means of Flexible Organic Electrochemical Transistors , 2020, Materials.

[59]  Xiaolin Cao,et al.  Highly sensitive sandwich electrochemical sensor based on DNA-scaffolded bivalent split aptamer signal probe , 2020 .

[60]  Junping Wang,et al.  Integrated dual-signal aptasensor based on magnet-driven operations and miniaturized analytical device for on-site analysis , 2020 .

[61]  F. Davis,et al.  Electrochemical Aptasensor for Detection of Dopamine , 2020, Chemosensors.

[62]  D. Mayer,et al.  A Highly Sensitive Amperometric Aptamer Biosensor for Adenosine Triphosphate Detection on a 64 Channel Gold Multielectrode Array , 2020, physica status solidi (a).

[63]  Wei Wang,et al.  Determination of dopamine by a label-free fluorescent aptasensor based on AuNPs and carbon quantum dots , 2020 .

[64]  Xiliang Luo,et al.  Construction of efficient "on-off-on" fluorescence aptasensor for ultrasensitive detection of prostate specific antigen via covalent energy transfer between g-C3N4 quantum dots and palladium triangular plates. , 2020, Analytica chimica acta.

[65]  G. Malliaras Organic electrochemical transistors , 2020 .

[66]  Yi Xiao,et al.  Tuning Biosensor Cross-Reactivity Using Aptamer Mixtures. , 2020, Analytical chemistry.

[67]  D. Mayer,et al.  A Novel Ratiometric Electrochemical Biosensor Based on a Split Aptamer for the Detection of Dopamine with Logic Gate Operations , 2020, physica status solidi (a).

[68]  Fredrik Höök,et al.  Single-molecule biosensors: Recent advances and applications. , 2020, Biosensors & bioelectronics.

[69]  Oh Seok Kwon,et al.  High-Performance Conducting Polymer Nanotube-based Liquid-Ion Gated Field-Effect Transistor Aptasensor for Dopamine Exocytosis , 2020, Scientific Reports.

[70]  Xuefeng Guo,et al.  Interface Engineering in Organic Field-Effect Transistors: Principles, Applications, and Perspectives. , 2020, Chemical reviews.

[71]  A. Steckl,et al.  Lateral flow assay using aptamer-based sensing for on-site detection of dopamine in urine. , 2020, Analytical biochemistry.

[72]  C. Das Mukhopadhyay,et al.  Quantitative detection of neurotransmitter using aptamer: From diagnosis to therapeutics , 2020, Journal of Biosciences.

[73]  Zhiyong Guo,et al.  A novel label-free fluorescence aptasensor for dopamine detection based on an Exonuclease III- and SYBR Green I- aided amplification strategy , 2020 .

[74]  R. Fogel,et al.  Generation and screening of histamine-specific aptamers for application in a novel impedimetric aptamer-based sensor. , 2020, Talanta.

[75]  Y. Omidi,et al.  Aptamer-conjugated mesoporous silica nanoparticles for simultaneous imaging and therapy of cancer , 2020 .

[76]  Wen-Yih Chen,et al.  Predicting Future Prospects of Aptamers in Field-Effect Transistor Biosensors , 2020, Molecules.

[77]  B. J. Venton,et al.  Fundamentals of fast-scan cyclic voltammetry for dopamine detection. , 2020, The Analyst.

[78]  J. Movshon,et al.  From basic brain research to treating human brain disorders , 2019, Proceedings of the National Academy of Sciences.

[79]  Yi Xiao,et al.  Innovative engineering and sensing strategies for aptamer-based small-molecule detection. , 2019, Trends in analytical chemistry : TRAC.

[80]  Deepti Kakkar,et al.  Recent Advances and Progress in Development of the Field Effect Transistor Biosensor: A Review , 2019, Journal of Electronic Materials.

[81]  Mounir Boukadoum,et al.  A Review of Neurotransmitters Sensing Methods for Neuro-Engineering Research , 2019, Applied Sciences.

[82]  Yi Guo,et al.  Electrochemical aptamer-based microsensor for real-time monitoring of adenosine in vivo. , 2019, Analytica chimica acta.

[83]  D. Mayer,et al.  Amplification of aptamer sensor signals by four orders of magnitude via interdigitated organic electrochemical transistors. , 2019, Biosensors & bioelectronics.

[84]  M. Dinarvand,et al.  Near Infrared imaging of serotonin release from cells with fluorescent nanosensors. , 2019, Nano letters.

[85]  Juntao Zhang,et al.  Facile preparation of a collagen-graphene oxide composite: A sensitive and robust electrochemical aptasensor for determining dopamine in biological samples. , 2019, International journal of biological macromolecules.

[86]  M. El-Shahawi,et al.  High Affinity Aptamer for the Detection of the Biogenic Amine Histamine. , 2019, Analytical chemistry.

[87]  J. Krystal,et al.  Altered Connectivity in Depression: GABA and Glutamate Neurotransmitter Deficits and Reversal by Novel Treatments , 2019, Neuron.

[88]  Jun Li,et al.  Graphene foam field-effect transistor for ultra-sensitive label-free detection of ATP , 2019, Sensors and Actuators B: Chemical.

[89]  H. Linke,et al.  Biosensing using arrays of vertical semiconductor nanowires: mechanosensing and biomarker detection , 2019, Nanotechnology.

[90]  Shrey Desai,et al.  Ideal-Filter Capillary Electrophoresis (IFCE) Facilitates the One-Step Selection of Aptamers. , 2019, Angewandte Chemie.

[91]  Ki-Bum Lee,et al.  NIR Biosensing of Neurotransmitters in Stem Cell‐Derived Neural Interface Using Advanced Core–Shell Upconversion Nanoparticles , 2019, Advanced materials.

[92]  Xingguo Chen,et al.  Fluorometric dopamine assay based on an energy transfer system composed of aptamer-functionalized MoS2 quantum dots and MoS2 nanosheets , 2019, Microchimica Acta.

[93]  F. Faridbod,et al.  Nanomaterial based electrochemical sensing of the biomarker serotonin: a comprehensive review , 2019, Microchimica Acta.

[94]  E. Ferapontova,et al.  Dopamine Binding and Analysis in Undiluted Human Serum and Blood by the RNA-Aptamer Electrode. , 2019, ACS chemical neuroscience.

[95]  Min Zhao,et al.  Voltammetric aptasensor for sulfadimethoxine using a nanohybrid composed of multifunctional fullerene, reduced graphene oxide and Pt@Au nanoparticles, and based on direct electron transfer to the active site of glucose oxidase , 2018, Microchimica Acta.

[96]  F. Beltram,et al.  Ionic‐Liquid Gating of InAs Nanowire‐Based Field‐Effect Transistors , 2018, Advanced Functional Materials.

[97]  Yang Yang,et al.  Aptamer–field-effect transistors overcome Debye length limitations for small-molecule sensing , 2018, Science.

[98]  Hui Jin,et al.  Reduced graphene oxide/nile blue/gold nanoparticles complex-modified glassy carbon electrode used as a sensitive and label-free aptasensor for ratiometric electrochemical sensing of dopamine. , 2018, Analytica chimica acta.

[99]  Y. Sasaki,et al.  Development of polymer field-effect transistor-based immunoassays , 2018, Polymer Journal.

[100]  Ziping Zhang,et al.  Rational engineering of synergically stabilized aptamer-cDNA duplex probes for strand displacement based electrochemical sensors , 2018, Electrochimica Acta.

[101]  O. Inganäs,et al.  Active Materials for Organic Electrochemical Transistors , 2018, Advanced materials.

[102]  Bai-Ou Guan,et al.  Highly sensitive detection of dopamine using a graphene functionalized plasmonic fiber-optic sensor with aptamer conformational amplification , 2018, Sensors and Actuators B: Chemical.

[103]  R. Chandra,et al.  A review on electrochemical detection of serotonin based on surface modified electrodes. , 2018, Biosensors & bioelectronics.

[104]  Jungang Yin,et al.  Enhancing the response rate of strand displacement-based electrochemical aptamer sensors using bivalent binding aptamer-cDNA probes. , 2018, Biosensors & bioelectronics.

[105]  Ying Yu,et al.  A multifunctional probe based on the use of labeled aptamer and magnetic nanoparticles for fluorometric determination of adenosine 5’-triphosphate , 2018, Microchimica Acta.

[106]  Edward Song,et al.  Recent Advances in the Detection of Neurotransmitters , 2018 .

[107]  Soumen Das,et al.  Colorimetric detection of epinephrine using an optimized paper-based aptasensor , 2017 .

[108]  Rongmei Kong,et al.  A versatile DNA detection scheme based on the quenching of fluorescent silver nanoclusters by MoS2 nanosheets: Application to aptamer-based determination of hepatitis B virus and of dopamine , 2017, Microchimica Acta.

[109]  Xiaobing Zhang,et al.  Aptamer-Modified Semiconductor Quantum Dots for Biosensing Applications , 2017, Sensors.

[110]  Masoud A. Mehrgardi,et al.  A simple non-enzymatic strategy for adenosine triphosphate electrochemical aptasensor using silver nanoparticle-decorated graphene oxide , 2017, Journal of the Iranian Chemical Society.

[111]  Jorge L. Chávez,et al.  Fast and Selective Plasmonic Serotonin Detection with Aptamer-Gold Nanoparticle Conjugates , 2017, Sensors.

[112]  Abhijeet Dhiman,et al.  ABCs of DNA aptamer and related assay development. , 2017, Biotechnology advances.

[113]  J. Rossi,et al.  Aptamers as targeted therapeutics: current potential and challenges , 2016, Nature Reviews Drug Discovery.

[114]  A. Abbasi,et al.  A simple and label-free aptasensor based on amino group-functionalized gold nanocomposites-Prussian blue/carbon nanotubes as labels for signal amplification , 2016 .

[115]  Lin Liu,et al.  An electrochemical aptasensor for sensitive and selective detection of dopamine based on signal amplification of electrochemical-chemical redox cycling , 2016 .

[116]  A. Abbasi,et al.  Design and characterization of electrochemical dopamine-aptamer as convenient and integrated sensing platform. , 2016, Analytical biochemistry.

[117]  C. Pan,et al.  Differential Releases of Dopamine and Neuropeptide Y from Histamine-Stimulated PC12 Cells Detected by an Aptamer-Modified Nanowire Transistor. , 2016, Small.

[118]  Shana O Kelley,et al.  Electrochemical Methods for the Analysis of Clinically Relevant Biomolecules. , 2016, Chemical reviews.

[119]  Seung Soo Oh,et al.  Rapid and Label-Free Strategy to Isolate Aptamers for Metal Ions. , 2016, ACS nano.

[120]  Shuming Yang,et al.  Split aptamers and their applications in sandwich aptasensors , 2016 .

[121]  Maria C. DeRosa,et al.  Small-Molecule Binding Aptamers: Selection Strategies, Characterization, and Applications , 2016, Front. Chem..

[122]  S. Kruss,et al.  Nanosensors for neurotransmitters , 2016, Analytical and Bioanalytical Chemistry.

[123]  Ziping Zhang,et al.  Effect of structure variation of the aptamer-DNA duplex probe on the performance of displacement-based electrochemical aptamer sensors. , 2016, Biosensors & bioelectronics.

[124]  E. Ferapontova,et al.  Electrochemical Label-Free Aptasensor for Specific Analysis of Dopamine in Serum in the Presence of Structurally Related Neurotransmitters. , 2016, Analytical chemistry.

[125]  Andiara E. Freitas,et al.  Simultaneous determination of 8 neurotransmitters and their metabolite levels in rat brain using liquid chromatography in tandem with mass spectrometry: Application to the murine Nrf2 model of depression. , 2016, Clinica chimica acta; international journal of clinical chemistry.

[126]  M. Dumontier,et al.  Analysis of In Vitro Aptamer Selection Parameters , 2015, Journal of Molecular Evolution.

[127]  Huangxian Ju,et al.  Aptamer loaded MoS2 nanoplates as nanoprobes for detection of intracellular ATP and controllable photodynamic therapy. , 2015, Nanoscale.

[128]  Jinghua Yu,et al.  Ultrasensitive electrochemiluminescence aptasensor based on a graphene/polyaniline composite film modified electrode and CdS quantum dot coated platinum nanostructured networks as labels , 2015 .

[129]  R. Wightman,et al.  Electrochemical Analysis of Neurotransmitters. , 2015, Annual review of analytical chemistry.

[130]  Andreas Offenhäusser,et al.  Multi-level logic gate operation based on amplified aptasensor performance. , 2015, Angewandte Chemie.

[131]  C. Halldin,et al.  Application of cross-species PET imaging to assess neurotransmitter release in brain , 2015, Psychopharmacology.

[132]  Yang Yang,et al.  Fabrication of High-Performance Ultrathin In2O3 Film Field-Effect Transistors and Biosensors Using Chemical Lift-Off Lithography. , 2015, ACS nano.

[133]  Huangxian Ju,et al.  "Off-on" electrochemiluminescence system for sensitive detection of ATP via target-induced structure switching. , 2014, Analytical chemistry.

[134]  Hyo Sung Jung,et al.  Chemical sensing of neurotransmitters. , 2014, Chemical Society reviews.

[135]  Ya-Ting Chung,et al.  An ultrasensitive nanowire-transistor biosensor for detecting dopamine release from living PC12 cells under hypoxic stimulation. , 2013, Journal of the American Chemical Society.

[136]  Xiwen He,et al.  Electrochemiluminescent biosensor of ATP using tetrahedron structured DNA and a functional oligonucleotide for Ru(phen)3(2+) intercalation and target identification. , 2013, Biosensors & bioelectronics.

[137]  L. Du,et al.  An ATP sensitive light addressable biosensor for extracellular monitoring of single taste receptor cell , 2012, Biomedical Microdevices.

[138]  J. Widengren,et al.  Förster resonance energy transfer beyond 10 nm: exploiting the triplet state kinetics of organic fluorophores. , 2011, The journal of physical chemistry. B.

[139]  Yong Wang,et al.  Aptamer-based colorimetric biosensing of dopamine using unmodified gold nanoparticles , 2011 .

[140]  Liguang Xu,et al.  Side-by-side and end-to-end gold nanorod assemblies for environmental toxin sensing. , 2010, Angewandte Chemie.

[141]  Yuehe Lin,et al.  Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells. , 2010, Journal of the American Chemical Society.

[142]  Baoxin Li,et al.  Simple and sensitive detection of dopamine in the presence of high concentration of ascorbic acid using gold nanoparticles as colorimetric probes , 2010 .

[143]  Taeghwan Hyeon,et al.  Nonblinking and Nonbleaching Upconverting Nanoparticles as an Optical Imaging Nanoprobe and T1 Magnetic Resonance Imaging Contrast Agent , 2009 .

[144]  R. Kennedy,et al.  Review of recent advances in analytical techniques for the determination of neurotransmitters. , 2009, Analytica chimica acta.

[145]  Chad A Mirkin,et al.  Aptamer nano-flares for molecular detection in living cells. , 2009, Nano letters.

[146]  M. Oyama,et al.  Fabrication of a colorimetric electrochemiluminescence sensor. , 2009, Analytical chemistry.

[147]  Zhao Li,et al.  A new method for the detection of ATP using a quantum-dot-tagged aptamer , 2008, Analytical and bioanalytical chemistry.

[148]  I. Suni Impedance methods for electrochemical sensors using nanomaterials , 2008 .

[149]  Chih-Ching Huang,et al.  Colorimetric determination of urinary adenosine using aptamer-modified gold nanoparticles. , 2008, Biosensors & bioelectronics.

[150]  J. Vörös,et al.  Electrochemical Biosensors - Sensor Principles and Architectures , 2008, Sensors.

[151]  J. Homola Surface plasmon resonance sensors for detection of chemical and biological species. , 2008, Chemical reviews.

[152]  H. Ozaki,et al.  Arginine-modified DNA Aptamers That Show Enantioselective Recognition of the Dicarboxylic Acid Moiety of Glutamic Acid , 2008, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[153]  A. Björklund,et al.  Dopamine neuron systems in the brain: an update , 2007, Trends in Neurosciences.

[154]  C. Soeller,et al.  DNA hybridization detection with blue luminescent quantum dots and dye-labeled single-stranded DNA. , 2007, Journal of the American Chemical Society.

[155]  R. Stoltenburg,et al.  FluMag-SELEX as an advantageous method for DNA aptamer selection , 2005, Analytical and bioanalytical chemistry.

[156]  Chad A Mirkin,et al.  Nanostructures in biodiagnostics. , 2005, Chemical reviews.

[157]  Steven E. Hyman Neurotransmitters , 2005, Current Biology.

[158]  E. Gundelfinger,et al.  Temporal and spatial coordination of exocytosis and endocytosis , 2003, Nature Reviews Molecular Cell Biology.

[159]  P. Garris,et al.  Frequency of Dopamine Concentration Transients Increases in Dorsal and Ventral Striatum of Male Rats during Introduction of Conspecifics , 2002, The Journal of Neuroscience.

[160]  Robert T Kennedy,et al.  In vivo neurochemical monitoring by microdialysis and capillary separations. , 2002, Current opinion in chemical biology.

[161]  H. Bradford Glutamate, GABA and epilepsy , 1995, Progress in Neurobiology.

[162]  J. Szostak,et al.  A DNA aptamer that binds adenosine and ATP. , 1995, Biochemistry.

[163]  Jack W. Szostak,et al.  An RNA motif that binds ATP , 1993, Nature.

[164]  Yanli Tang,et al.  Universal fluorometric aptasensor platform based on water-soluble conjugated polymers/graphene oxide , 2017, Analytical and Bioanalytical Chemistry.

[165]  Mohammad Hasanzadeh,et al.  Current advancement in electrochemical analysis of neurotransmitters in biological fluids , 2017 .

[166]  A. Stoessl Developments in neuroimaging: positron emission tomography. , 2014, Parkinsonism & related disorders.

[167]  Niina J. Ronkainen,et al.  Electrochemical biosensors. , 2010, Chemical Society reviews.

[168]  M. Richter Electrochemiluminescence (ECL). , 2004, Chemical reviews.