Linear Clique-Width for Hereditary Classes of Cographs

The class of cographs is known to have unbounded linear clique-width. We prove that a hereditary class of cographs has bounded linear clique-width if and only if it does not contain all quasi-threshold graphs or their complements. The proof borrows ideas from the enumeration of permutation classes.

[1]  Frank Gurski,et al.  Characterizations for co-graphs defined by restricted NLC-width or clique-width operations , 2006, Discret. Math..

[2]  R. Fraïssé Sur l'extension aux relations de quelques propriétés des ordres , 1954 .

[3]  Egon Wanke,et al.  On the relationship between NLC-width and linear NLC-width , 2005, Theor. Comput. Sci..

[4]  Paul D. Seymour,et al.  Approximating clique-width and branch-width , 2006, J. Comb. Theory B.

[5]  Pinar Heggernes,et al.  A Complete Characterisation of the Linear Clique-Width of Path Powers , 2009, TAMC.

[6]  Nik Ruskuc,et al.  Inflations of geometric grid classes of permutations , 2012, 1202.1833.

[7]  A. Brandstädt,et al.  Graph Classes: A Survey , 1987 .

[8]  Vadim V. Lozin,et al.  Recent developments on graphs of bounded clique-width , 2009, Discret. Appl. Math..

[9]  Joseph B. Kruskal,et al.  The Theory of Well-Quasi-Ordering: A Frequently Discovered Concept , 1972, J. Comb. Theory A.

[10]  Udi Rotics,et al.  On the Relationship between Clique-Width and Treewidth , 2001, WG.

[11]  Peter Damaschke,et al.  Induced subgraphs and well-quasi-ordering , 1990, J. Graph Theory.

[12]  M. Albert,et al.  Subclasses of the separable permutations , 2010, 1007.1014.

[13]  Udi Rotics,et al.  Edge dominating set and colorings on graphs with fixed clique-width , 2003, Discret. Appl. Math..

[14]  Marko Petkovsek,et al.  Letter graphs and well-quasi-order by induced subgraphs , 2002, Discret. Math..

[15]  Bruno Courcelle,et al.  Handle-Rewriting Hypergraph Grammars , 1993, J. Comput. Syst. Sci..

[16]  Bruno Courcelle,et al.  Linear Time Solvable Optimization Problems on Graphs of Bounded Clique-Width , 2000, Theory of Computing Systems.

[17]  Graham Higman,et al.  Ordering by Divisibility in Abstract Algebras , 1952 .

[18]  Jan Arne Telle,et al.  Boolean-width of graphs , 2009, Theor. Comput. Sci..

[19]  M. Atkinson,et al.  Geometric grid classes of permutations , 2011, 1108.6319.

[20]  Bruno Courcelle,et al.  Upper bounds to the clique width of graphs , 2000, Discret. Appl. Math..

[21]  Dieter Rautenbach,et al.  The relative clique-width of a graph , 2007, J. Comb. Theory, Ser. B.

[22]  Egon Wanke,et al.  How to Solve NP-hard Graph Problems on Clique-Width Bounded Graphs in Polynomial Time , 2001, WG.

[23]  Pinar Heggernes,et al.  Graphs of linear clique-width at most 3 , 2008, Theor. Comput. Sci..

[24]  Egon Wanke,et al.  k-NLC Graphs and Polynomial Algorithms , 1994, Discret. Appl. Math..

[25]  Bruno Courcelle,et al.  The Expression of Graph Properties and Graph Transformations in Monadic Second-Order Logic , 1997, Handbook of Graph Grammars.

[26]  Vadim V. Lozin,et al.  Minimal Classes of Graphs of Unbounded Clique-width and Well-quasi-ordering , 2015, ArXiv.