On manifolds of tensors of fixed TT-rank
暂无分享,去创建一个
Reinhold Schneider | Sebastian Holtz | Thorsten Rohwedder | R. Schneider | T. Rohwedder | S. Holtz | Sebastian Holtz
[1] E. Hairer,et al. Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .
[2] I. V. Oseledets,et al. Tensors inside of matrices give logarithmic complexity , 2009 .
[3] Armin Iske,et al. Adaptive ADER Methods Using Kernel-Based Polyharmonic Spline WENO Reconstruction , 2010, SIAM J. Sci. Comput..
[4] Robert E. Mahony,et al. Optimization Algorithms on Matrix Manifolds , 2007 .
[5] Reinhold Schneider,et al. The Alternating Linear Scheme for Tensor Optimization in the Tensor Train Format , 2012, SIAM J. Sci. Comput..
[6] Volker Mehrmann,et al. Differential-Algebraic Equations: Analysis and Numerical Solution , 2006 .
[7] Wang-Q Lim,et al. Shearlets on Bounded Domains , 2010, 1007.3039.
[8] Reinhold Schneider,et al. Variational calculus with sums of elementary tensors of fixed rank , 2012, Numerische Mathematik.
[9] Antonio Falcó,et al. On Minimal Subspaces in Tensor Representations , 2012, Found. Comput. Math..
[10] G. Teschke,et al. Accelerated projected steepest descent method for nonlinear inverse problems with sparsity constraints , 2010 .
[11] Lutz Kämmerer,et al. Interpolation lattices for hyperbolic cross trigonometric polynomials , 2012, J. Complex..
[12] M. Fannes,et al. Finitely correlated states on quantum spin chains , 1992 .
[13] R. Schneider,et al. DIRECT MINIMIZATION FOR CALCULATING INVARIANT SUBSPACES IN DENSITY FUNCTIONAL COMPUTATIONS OF THE ELECTRONIC STRUCTURE , 2008, 0805.1190.
[14] G. Teschke,et al. A compressive Landweber iteration for solving ill-posed inverse problems , 2008 .
[15] Winfried Sickel,et al. Best m-term approximation and Lizorkin-Triebel spaces , 2011, J. Approx. Theory.
[16] White,et al. Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.
[17] Karsten Urban,et al. Adaptive Wavelet Methods on Unbounded Domains , 2012, Journal of Scientific Computing.
[18] H. Neudecker,et al. An approach ton-mode components analysis , 1986 .
[19] L. Lathauwer. Tensor decompositions and applications : a survey , 2009 .
[20] Mark Coppejans,et al. Breaking the Curse of Dimensionality , 2000 .
[21] John M. Lee. Manifolds and Differential Geometry , 2009 .
[22] G. Teschke,et al. Compressive sensing principles and iterative sparse recovery for inverse and ill-posed problems , 2010 .
[23] Berkant Savas,et al. A Newton-Grassmann Method for Computing the Best Multilinear Rank-(r1, r2, r3) Approximation of a Tensor , 2009, SIAM J. Matrix Anal. Appl..
[24] Eugene E. Tyrtyshnikov,et al. Breaking the Curse of Dimensionality, Or How to Use SVD in Many Dimensions , 2009, SIAM J. Sci. Comput..
[25] Wolfgang Dahmen,et al. Convergence Rates for Greedy Algorithms in Reduced Basis Methods , 2010, SIAM J. Math. Anal..
[26] Daniela Rosca,et al. A New Hybrid Method for Image Approximation Using the Easy Path Wavelet Transform , 2011, IEEE Transactions on Image Processing.
[27] Lars Grasedyck,et al. F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig a Projection Method to Solve Linear Systems in Tensor Format a Projection Method to Solve Linear Systems in Tensor Format , 2022 .
[28] Sadegh Jokar,et al. Sparse recovery and Kronecker products , 2010, 2010 44th Annual Conference on Information Sciences and Systems (CISS).
[29] K. Bredies,et al. Regularization with non-convex separable constraints , 2009 .
[30] Sanjoy Dasgupta,et al. Adaptive Control Processes , 2010, Encyclopedia of Machine Learning and Data Mining.
[31] Dajana Conte,et al. Mathematical Modelling and Numerical Analysis an Error Analysis of the Multi-configuration Time-dependent Hartree Method of Quantum Dynamics , 2022 .
[32] Vin de Silva,et al. Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.
[33] Daniel Rudolf,et al. Error bounds for computing the expectation by Markov chain Monte Carlo , 2009, Monte Carlo Methods Appl..
[34] Winfried Sickel,et al. Best m-term aproximation and tensor product of Sobolev and Besov spaces-the case of non-compact embeddings , 2010 .
[35] R. Bellman,et al. V. Adaptive Control Processes , 1964 .
[36] Joos Vandewalle,et al. On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..
[37] Boris N. Khoromskij,et al. Multigrid Accelerated Tensor Approximation of Function Related Multidimensional Arrays , 2009, SIAM J. Sci. Comput..
[38] Claude Klöckl,et al. The density matrix renormalization group on tensor networks , 2013 .
[39] S. Lang. Fundamentals of differential geometry , 1998 .
[40] J. Leeuw,et al. Principal component analysis of three-mode data by means of alternating least squares algorithms , 1980 .
[41] O. Ernst,et al. ON THE CONVERGENCE OF GENERALIZED POLYNOMIAL CHAOS EXPANSIONS , 2011 .
[42] P. Absil,et al. Riemannian Geometry of Grassmann Manifolds with a View on Algorithmic Computation , 2004 .
[43] Othmar Koch,et al. Dynamical Low-Rank Approximation , 2007, SIAM J. Matrix Anal. Appl..
[44] L. Lathauwer,et al. On the Best Rank-1 and Rank-( , 2004 .
[45] C. Lubich. From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis , 2008 .
[46] J. Friedman. Multivariate adaptive regression splines , 1990 .
[47] Erich Novak,et al. Optimal approximation of elliptic problems by linear and nonlinear mappings IV: Errors in L2 and other norms , 2004, J. Complex..
[48] T. Schulte-Herbrüggen,et al. Computations in quantum tensor networks , 2012, 1212.5005.
[49] Othmar Koch,et al. Dynamical Tensor Approximation , 2010, SIAM J. Matrix Anal. Appl..
[50] Winfried Sickel,et al. Best m-Term Approximation and Sobolev–Besov Spaces of Dominating Mixed Smoothness—the Case of Compact Embeddings , 2012 .
[51] Erwan Faou,et al. Computing Semiclassical Quantum Dynamics with Hagedorn Wavepackets , 2009, SIAM J. Sci. Comput..
[52] T. Crawford,et al. An Introduction to Coupled Cluster Theory for Computational Chemists , 2007 .
[53] Andreas Zeiser,et al. Wavelet Approximation in Weighted Sobolev Spaces of Mixed Order with Applications to the Electronic Schrödinger Equation , 2012 .
[54] L. Tucker,et al. Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.
[55] D. Lorenz,et al. Greedy solution of ill-posed problems: error bounds and exact inversion , 2009, 0904.0154.
[56] Alan Edelman,et al. The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..
[57] Wang-Q Lim,et al. Compactly Supported Shearlets , 2010, 1009.4359.
[58] W. Hackbusch,et al. Black Box Low Tensor-Rank Approximation Using Fiber-Crosses , 2009 .
[59] H. Yserentant,et al. On the Complexity of the Electronic Schrödinger Equation , 2022 .
[60] E. Novak,et al. Optimal Order of Convergence and (In)Tractability of Multivariate Approximation of Smooth Functions , 2009 .
[61] Andreas Schadschneider,et al. Groundstate properties of a generalized VBS-model , 1992 .
[62] J. Olsen,et al. Molecular electronic-structure theory , 2000 .
[63] Lars Grasedyck,et al. Hierarchical Singular Value Decomposition of Tensors , 2010, SIAM J. Matrix Anal. Appl..
[64] Joos Vandewalle,et al. A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..
[65] Martin J. Mohlenkamp,et al. Multivariate Regression and Machine Learning with Sums of Separable Functions , 2009, SIAM J. Sci. Comput..
[66] Trygve Helgaker,et al. Molecular Electronic-Structure Theory: Helgaker/Molecular Electronic-Structure Theory , 2000 .
[67] Berkant Savas,et al. Quasi-Newton Methods on Grassmannians and Multilinear Approximations of Tensors , 2009, SIAM J. Sci. Comput..
[68] F. Verstraete,et al. Complete-graph tensor network states: a new fermionic wave function ansatz for molecules , 2010, 1004.5303.
[69] Wolfgang Dahmen,et al. Fast high-dimensional approximation with sparse occupancy trees , 2011, J. Comput. Appl. Math..
[70] G. Vidal. Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.
[71] Christian Bender,et al. Dual pricing of multi-exercise options under volume constraints , 2011, Finance Stochastics.
[72] G. Plonka. The Easy Path Wavelet Transform: A New Adaptive Wavelet Transform for Sparse Representation of Two-Dimensional Data , 2009 .
[73] Armin Iske,et al. Curvature analysis of frequency modulated manifolds in dimensionality reduction , 2011 .
[74] W. Hackbusch,et al. A New Scheme for the Tensor Representation , 2009 .
[75] Ivan Oseledets,et al. A new tensor decomposition , 2009 .
[76] Harry Yserentant,et al. The mixed regularity of electronic wave functions multiplied by explicit correlation factors , 2011 .
[77] Stephan Dahlke,et al. Adaptive wavelet methods and sparsity reconstruction for inverse heat conduction problems , 2010, Adv. Comput. Math..
[78] Gerlind Plonka-Hoch,et al. The Easy Path Wavelet Transform: A New Adaptive Wavelet Transform for Sparse Representation of Two-Dimensional Data , 2008, Multiscale Model. Simul..
[79] Toshio Odanaka,et al. ADAPTIVE CONTROL PROCESSES , 1990 .
[80] M. Beck,et al. The multiconfiguration time-dependent Hartree (MCTDH) method: A highly efficient algorithm for propa , 1999 .
[81] Steffen Dereich,et al. Multilevel Monte Carlo algorithms for L\'{e}vy-driven SDEs with Gaussian correction , 2011, 1101.1369.
[82] Jerome H. Friedman. Multivariate adaptive regression splines (with discussion) , 1991 .