Identifying the ultrametricity of time series
暂无分享,去创建一个
[1] Robert Donaghey,et al. Alternating Permutations and Binary Increasing Trees , 1975, J. Comb. Theory, Ser. A.
[2] R. Barate,et al. Search for charginos and neutralinos in e , 1999 .
[3] D. Hand. Cluster dissection and analysis: Helmuth SPATH Wiley, Chichester, 1985, 226 pages, £25.00 , 1986 .
[4] R. Mantegna,et al. An Introduction to Econophysics: Contents , 1999 .
[5] H. Spath. Cluster Dissection and Analysis , 1985 .
[6] R. Mantegna. Hierarchical structure in financial markets , 1998, cond-mat/9802256.
[7] Fionn Murtagh,et al. Web traffic demand forecasting using wavelet‐based multiscale decomposition , 2001 .
[8] B. Pompe,et al. Permutation entropy: a natural complexity measure for time series. , 2002, Physical review letters.
[9] R.M. Haralick,et al. Statistical and structural approaches to texture , 1979, Proceedings of the IEEE.
[10] Sergei Maslov,et al. Hierarchy measures in complex networks. , 2003, Physical review letters.
[11] Lei Xu,et al. Topological local principal component analysis , 2003, Neurocomputing.
[12] Rudolph C. Hwa,et al. Power-law scaling in human EEG: relation to Fourier power spectrum , 2003, Neurocomputing.
[13] Fionn Murtagh,et al. Counting dendrograms: A survey , 1984, Discret. Appl. Math..
[14] A Treves,et al. On the perceptual structure of face space. , 1997, Bio Systems.
[15] G. Toulouse,et al. Ultrametricity for physicists , 1986 .
[16] Rosario N. Mantegna,et al. An Introduction to Econophysics: Contents , 1999 .
[17] Katharina Wittfeld,et al. Distances of Time Series Components by Means of Symbolic Dynamics , 2004, Int. J. Bifurc. Chaos.
[18] Karsten Keller,et al. Symbolic Analysis of High-Dimensional Time Series , 2003, Int. J. Bifurc. Chaos.
[19] Fionn Murtagh,et al. On Ultrametricity, Data Coding, and Computation , 2004, J. Classif..
[20] R. Rammal,et al. On the degree of ultrametricity , 1985 .
[21] Alexander K. Hartmann. Are ground states of 3d ±J spin glasses ultrametric? , 1998 .