Peptide-amphiphile nanofibers: A versatile scaffold for the preparation of self-assembling materials

Twelve derivatives of peptide-amphiphile molecules, designed to self-assemble into nanofibers, are described. The scope of amino acid selection and alkyl tail modification in the peptide-amphiphile molecules are investigated, yielding nanofibers varying in morphology, surface chemistry, and potential bioactivity. The results demonstrate the chemically versatile nature of this supramolecular system and its high potential for manufacturing nanomaterials. In addition, three different modes of self-assembly resulting in nanofibers are described, including pH control, divalent ion induction, and concentration.

[1]  M. Tirrell,et al.  Construction of biologically active protein molecular architecture using self-assembling peptide-amphiphiles. , 1997, Methods in enzymology.

[2]  S. Stupp,et al.  Synthesis of Two-Dimensional Polymers , 1993, Science.

[3]  G. Wegner,et al.  Piezoelectricity in Polar Supramolecular Materials , 2000 .

[4]  P. Privalov,et al.  The hydrophobic effect: a reappraisal , 1989 .

[5]  S. Stupp,et al.  Self-assembly of dendron rodcoil molecules into nanoribbons. , 2001, Journal of the American Chemical Society.

[6]  S. Stupp,et al.  Supramolecular Materials: Self-Organized Nanostructures , 1997, Science.

[7]  David E Reichert,et al.  Self-Assembling Dendrimers , 1996, Science.

[8]  Tushar H. Gore,et al.  Self-Assembly of Model Collagen Peptide Amphiphiles , 2001 .

[9]  G. Whitesides,et al.  Solid-State Structures of Hydrogen-Bonded Tapes Based on Cyclic Secondary Diamides , 1994 .

[10]  C. Anfinsen Principles that govern the folding of protein chains. , 1973, Science.

[11]  S. Weiner,et al.  Three-dimensional ordered distribution of crystals in turkey tendon collagen fibers. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Juan R. Granja,et al.  Self-assembling organic nanotubes based on a cyclic peptide architecture , 1993, Nature.

[13]  H. Kleinman,et al.  A synthetic peptide containing the IKVAV sequence from the A chain of laminin mediates cell attachment, migration, and neurite outgrowth. , 1989, The Journal of biological chemistry.

[14]  K. Yase,et al.  Self-assembled peptide fibers from valylvaline bola-amphiphiles by a parallel beta-sheet network. , 2000, Biochimica et biophysica acta.

[15]  D. Wirtz,et al.  Reversible hydrogels from self-assembling artificial proteins. , 1998, Science.

[16]  James C. Hu,et al.  Sequence requirements for coiled-coils: analysis with lambda repressor-GCN4 leucine zipper fusions. , 1990, Science.

[17]  J. Hrbek,et al.  Interaction of Sulfur with Well-Defined Metal and Oxide Surfaces: Unraveling the Mysteries behind Catalyst Poisoning and Desulfurization , 1999 .

[18]  G. Whitesides,et al.  Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. , 1991, Science.

[19]  S. Stupp,et al.  Supramolecular Materials with Electroactive Chemical Functions , 2000 .

[20]  F. Bates,et al.  Giant wormlike rubber micelles , 1999, Science.

[21]  B. Ninham,et al.  Theory of self-assembly of lipid bilayers and vesicles. , 1977, Biochimica et biophysica acta.

[22]  M. Tirrell,et al.  Cellular recognition of synthetic peptide amphiphiles in self-assembled monolayer films. , 1999, Biomaterials.

[23]  Steve Weiner,et al.  THE MATERIAL BONE: Structure-Mechanical Function Relations , 1998 .

[24]  J. Israelachvili Intermolecular and surface forces , 1985 .

[25]  M. Djabourov Gelation—A review , 1991 .

[26]  C. Ahn,et al.  Controlling polymer shape through the self-assembly of dendritic side-groups , 1998, Nature.

[27]  Sébastien Lecommandoux,et al.  Self-Assembly of Peptide-Based Diblock Oligomers , 2000 .

[28]  Matthew Tirrell,et al.  Self-assembling amphiphiles for construction of protein molecular architecture , 1996 .

[29]  Matthew Tirrell,et al.  Proteinlike molecular architecture: Biomaterial applications for inducing cellular receptor binding and signal transduction , 1998 .

[30]  R. Nolte,et al.  Self-assembly of disk-shaped molecules to coiled-coil aggregates with tunable helicity , 1999, Science.

[31]  S. Stupp,et al.  Bulk synthesis of two-dimensional polymers. The molecular recognition approach , 1995 .

[32]  M. Ghadiri,et al.  Covalent Capture and Stabilization of Cylindrical β‐Sheet Peptide Assemblies , 1999 .

[33]  Matthew Tirrell,et al.  Synthetic lipidation of peptides and amino acids: monolayer structure and properties. , 1995 .

[34]  M. Ghadiri,et al.  Peptide Nanotubes and Beyond , 1998 .

[35]  S. Stupp,et al.  Conversion of supramolecular clusters to macromolecular objects , 1999, Science.

[36]  E. W. Meijer,et al.  Helical self-assembled polymers from cooperative stacking of hydrogen-bonded pairs , 2000, Nature.

[37]  Jean-Marie Lehn,et al.  Comprehensive Supramolecular Chemistry , 1996 .

[38]  H. Kleinman,et al.  Identification of an amino acid sequence in the laminin A chain mediating mast cell attachment and spreading. , 1991, Immunology.

[39]  Goran Ungar,et al.  Direct Visualization of Individual Cylindrical and Spherical Supramolecular Dendrimers , 1997 .

[40]  Gregg B. Fields,et al.  MINIMAL LIPIDATION STABILIZES PROTEIN-LIKE MOLECULAR ARCHITECTURE , 1998 .

[41]  M. Tirrell,et al.  Structure and dynamics of peptide-amphiphiles incorporating triple-helical proteinlike molecular architecture. , 1999, Biochemistry.

[42]  Samuel I. Stupp,et al.  Nanophase Separation in Monodisperse Rodcoil Diblock Polymers , 1994 .