Low-loss titanium dioxide waveguides and resonators using a dielectric lift-off fabrication process.
暂无分享,去创建一个
[1] Joseph T. Boyd,et al. CO 2 laser annealing of Si 3 N 4 , Nb 2 O 5 , and Ta 2 O 5 thin-film optical waveguides to achieve scattering loss reduction , 1982 .
[2] B. Adhikari,et al. Polymers in sensor applications , 2004 .
[3] Eric Mazur,et al. Submicrometer-wide amorphous and polycrystalline anatase TiO2 waveguides for microphotonic devices. , 2012, Optics express.
[4] Kwang-Ting Cheng,et al. Thermal stress implications in athermal TiO2 waveguides on a silicon substrate. , 2014, Optics express.
[5] P. Tien. Light waves in thin films and integrated optics. , 1971, Applied optics.
[6] J. D. Thompson,et al. Efficient fiber-optical interface for nanophotonic devices , 2014, 1409.7698.
[7] Eric Mazur,et al. Mixed two- and three-photon absorption in bulk rutile (TiO2) around 800 nm. , 2012, Optics express.
[8] J. Rarity,et al. Photonic quantum technologies , 2009, 1003.3928.
[9] A. Harke,et al. Low-loss singlemode amorphous silicon waveguides , 2005 .
[10] Michal Lipson,et al. Athermal silicon microring resonators with titanium oxide cladding. , 2013, Optics express.
[11] C. Hoffmann,et al. Evanescent field Sensors Based on Tantalum Pentoxide Waveguides – A Review , 2008, Sensors.
[12] A. Politi,et al. Silica-on-Silicon Waveguide Quantum Circuits , 2008, Science.
[13] Kathleen Richardson,et al. Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides. , 2007, Optics express.
[14] Eric Mazur,et al. Spectral broadening in anatase titanium dioxide waveguides at telecommunication and near-visible wavelengths. , 2013, Optics express.
[15] Y. Bando,et al. Synthesis, structure, and photoluminescence of very thin and wide alpha silicon nitride (α-Si3N4) single-crystalline nanobelts , 2003 .
[16] Heather K Hunt,et al. Label-free biological and chemical sensors. , 2010, Nanoscale.
[17] Eric Mazur,et al. Multimode phase-matched third-harmonic generation in sub-micrometer-wide anatase TiO₂ waveguides. , 2015, Optics express.
[18] Po Dong,et al. High speed carrier-depletion modulators with 1.4V-cm V(pi)L integrated on 0.25microm silicon-on-insulator waveguides. , 2010, Optics express.
[19] R. Morandotti,et al. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics , 2013, Nature Photonics.
[20] Kathleen Richardson,et al. Optical loss reduction in high-index-contrast chalcogenide glass waveguides via thermal reflow. , 2010, Optics express.
[21] L C Kimerling,et al. Fabrication of ultralow-loss Si/SiO(2) waveguides by roughness reduction. , 2001, Optics letters.
[22] P. Hemmer,et al. A diamond nanowire single-photon source. , 2009, Nature nanotechnology.
[23] M. Ghadiri,et al. A porous silicon-based optical interferometric biosensor. , 1997, Science.
[24] O. Painter,et al. Ultra-low-loss optical delay line on a silicon chip , 2012, Nature Communications.
[25] Steven H. Huang,et al. Titanium Dioxide Whispering Gallery Microcavities , 2014 .
[26] Yuze Sun,et al. Sensitive optical biosensors for unlabeled targets: a review. , 2008, Analytica chimica acta.
[27] M. Lipson,et al. Nanotaper for compact mode conversion. , 2003, Optics letters.
[28] Eric Mazur,et al. Integrated TiO2 resonators for visible photonics. , 2011, Optics letters.
[29] Tri Giang Phan,et al. Practical intravital two‐photon microscopy for immunological research: faster, brighter, deeper , 2010, Immunology and cell biology.
[30] K. Vahala. Optical microcavities : Photonic technologies , 2003 .
[31] Oskar Painter,et al. Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper. , 2005, Optics express.
[32] Larry R. Dalton,et al. Polymer micro-ring filters and modulators , 2002 .
[33] C. M. Natarajan,et al. Gallium arsenide (GaAs) quantum photonic waveguide circuits , 2014, 1403.2635.
[34] M. Furuhashi,et al. Development of microfabricated TiO2 channel waveguides , 2011 .
[35] Kathleen Richardson,et al. Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing. , 2008, Optics letters.
[36] J. Sanghera,et al. Waveguide amplifiers in sputtered films of Er3+-doped gallium lanthanum sulfide glass. , 2006, Optics express.
[37] J. S. Aitchison,et al. The nonlinear optical properties of AlGaAs at the half band gap , 1997 .
[38] R. Soref. Mid-infrared 2 × 2 electro-optical switching by silicon and germanium three-waveguide and four-waveguide directional couplers using free-carrier injection , 2014 .
[39] Lionel C. Kimerling,et al. Losses in polycrystalline silicon waveguides , 1996 .
[40] Markku Kuittinen,et al. Low-Loss Titanium Dioxide Strip Waveguides Fabricated by Atomic Layer Deposition , 2014, Journal of Lightwave Technology.
[41] Y. Vlasov,et al. Losses in single-mode silicon-on-insulator strip waveguides and bends. , 2004, Optics express.
[42] Juthika Basak,et al. CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide. , 2013, Optics express.