Low-loss titanium dioxide waveguides and resonators using a dielectric lift-off fabrication process.

We present a bi-layer lift-off fabrication approach to create low-loss amorphous titanium dioxide (TiO2) integrated optical waveguides and resonators for visible and near-infrared applications. This approach achieves single-mode waveguide losses as low as 7.5 dB/cm around 633 nm and 1.2 dB/cm around 1550 nm, a factor of 4 improvement over previous reports, without the need to optimize etching conditions. Depositing a secondary 260-nm TiO2 layer can reduce losses further, with the optimized process yielding micro-ring resonators with loaded quality factors as high as 1.5 × 10(5) around 1550 nm and 1.6×10(5) around 780 nm. These losses render our TiO2 devices suitable for visible and telecommunications applications; in addition, the simplicity of this lift-off approach is broadly applicable to other novel material platforms, particularly using near-visible wavelengths.

[1]  Joseph T. Boyd,et al.  CO 2 laser annealing of Si 3 N 4 , Nb 2 O 5 , and Ta 2 O 5 thin-film optical waveguides to achieve scattering loss reduction , 1982 .

[2]  B. Adhikari,et al.  Polymers in sensor applications , 2004 .

[3]  Eric Mazur,et al.  Submicrometer-wide amorphous and polycrystalline anatase TiO2 waveguides for microphotonic devices. , 2012, Optics express.

[4]  Kwang-Ting Cheng,et al.  Thermal stress implications in athermal TiO2 waveguides on a silicon substrate. , 2014, Optics express.

[5]  P. Tien Light waves in thin films and integrated optics. , 1971, Applied optics.

[6]  J. D. Thompson,et al.  Efficient fiber-optical interface for nanophotonic devices , 2014, 1409.7698.

[7]  Eric Mazur,et al.  Mixed two- and three-photon absorption in bulk rutile (TiO2) around 800 nm. , 2012, Optics express.

[8]  J. Rarity,et al.  Photonic quantum technologies , 2009, 1003.3928.

[9]  A. Harke,et al.  Low-loss singlemode amorphous silicon waveguides , 2005 .

[10]  Michal Lipson,et al.  Athermal silicon microring resonators with titanium oxide cladding. , 2013, Optics express.

[11]  C. Hoffmann,et al.  Evanescent field Sensors Based on Tantalum Pentoxide Waveguides – A Review , 2008, Sensors.

[12]  A. Politi,et al.  Silica-on-Silicon Waveguide Quantum Circuits , 2008, Science.

[13]  Kathleen Richardson,et al.  Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides. , 2007, Optics express.

[14]  Eric Mazur,et al.  Spectral broadening in anatase titanium dioxide waveguides at telecommunication and near-visible wavelengths. , 2013, Optics express.

[15]  Y. Bando,et al.  Synthesis, structure, and photoluminescence of very thin and wide alpha silicon nitride (α-Si3N4) single-crystalline nanobelts , 2003 .

[16]  Heather K Hunt,et al.  Label-free biological and chemical sensors. , 2010, Nanoscale.

[17]  Eric Mazur,et al.  Multimode phase-matched third-harmonic generation in sub-micrometer-wide anatase TiO₂ waveguides. , 2015, Optics express.

[18]  Po Dong,et al.  High speed carrier-depletion modulators with 1.4V-cm V(pi)L integrated on 0.25microm silicon-on-insulator waveguides. , 2010, Optics express.

[19]  R. Morandotti,et al.  New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics , 2013, Nature Photonics.

[20]  Kathleen Richardson,et al.  Optical loss reduction in high-index-contrast chalcogenide glass waveguides via thermal reflow. , 2010, Optics express.

[21]  L C Kimerling,et al.  Fabrication of ultralow-loss Si/SiO(2) waveguides by roughness reduction. , 2001, Optics letters.

[22]  P. Hemmer,et al.  A diamond nanowire single-photon source. , 2009, Nature nanotechnology.

[23]  M. Ghadiri,et al.  A porous silicon-based optical interferometric biosensor. , 1997, Science.

[24]  O. Painter,et al.  Ultra-low-loss optical delay line on a silicon chip , 2012, Nature Communications.

[25]  Steven H. Huang,et al.  Titanium Dioxide Whispering Gallery Microcavities , 2014 .

[26]  Yuze Sun,et al.  Sensitive optical biosensors for unlabeled targets: a review. , 2008, Analytica chimica acta.

[27]  M. Lipson,et al.  Nanotaper for compact mode conversion. , 2003, Optics letters.

[28]  Eric Mazur,et al.  Integrated TiO2 resonators for visible photonics. , 2011, Optics letters.

[29]  Tri Giang Phan,et al.  Practical intravital two‐photon microscopy for immunological research: faster, brighter, deeper , 2010, Immunology and cell biology.

[30]  K. Vahala Optical microcavities : Photonic technologies , 2003 .

[31]  Oskar Painter,et al.  Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper. , 2005, Optics express.

[32]  Larry R. Dalton,et al.  Polymer micro-ring filters and modulators , 2002 .

[33]  C. M. Natarajan,et al.  Gallium arsenide (GaAs) quantum photonic waveguide circuits , 2014, 1403.2635.

[34]  M. Furuhashi,et al.  Development of microfabricated TiO2 channel waveguides , 2011 .

[35]  Kathleen Richardson,et al.  Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing. , 2008, Optics letters.

[36]  J. Sanghera,et al.  Waveguide amplifiers in sputtered films of Er3+-doped gallium lanthanum sulfide glass. , 2006, Optics express.

[37]  J. S. Aitchison,et al.  The nonlinear optical properties of AlGaAs at the half band gap , 1997 .

[38]  R. Soref Mid-infrared 2 × 2 electro-optical switching by silicon and germanium three-waveguide and four-waveguide directional couplers using free-carrier injection , 2014 .

[39]  Lionel C. Kimerling,et al.  Losses in polycrystalline silicon waveguides , 1996 .

[40]  Markku Kuittinen,et al.  Low-Loss Titanium Dioxide Strip Waveguides Fabricated by Atomic Layer Deposition , 2014, Journal of Lightwave Technology.

[41]  Y. Vlasov,et al.  Losses in single-mode silicon-on-insulator strip waveguides and bends. , 2004, Optics express.

[42]  Juthika Basak,et al.  CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide. , 2013, Optics express.