Improving class separability using extended pixel planes: a comparative study

In this work we explored class separability in feature spaces built on extended representations of pixel planes (EPP) produced using scale pyramid, subband pyramid, and image transforms. The image transforms included Chebyshev, Fourier, wavelets, gradient, and Laplacian; we also utilized transform combinations, including Fourier, Chebyshev, and wavelets of the gradient transform, as well as Fourier of the Laplacian transform. We demonstrate that all three types of EPP promote class separation. We also explored the effect of EPP on suboptimal feature libraries, using only textural features in one case and only Haralick features in another. The effect of EPP was especially clear for these suboptimal libraries, where the transform-based representations were found to increase separability to a greater extent than scale or subband pyramids. EPP can be particularly useful in new applications where optimal features have not yet been developed.

[1]  M V Boland,et al.  Automated recognition of patterns characteristic of subcellular structures in fluorescence microscopy images. , 1998, Cytometry.

[2]  Cordelia Schmid,et al.  Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[3]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[4]  I. Goldberg,et al.  Quantitative Image Analysis Reveals Distinct Structural Transitions during Aging in Caenorhabditis elegans Tissues , 2008, PloS one.

[5]  John W. Woods,et al.  Subband Image Coding , 1990 .

[6]  Lewis D. Griffin,et al.  Using Basic Image Features for Texture Classification , 2010, International Journal of Computer Vision.

[7]  佐藤 孝紀,et al.  A Hierarchical Data Structure for Picture Processing , 1976 .

[8]  David G. Stork,et al.  Pattern Classification , 1973 .

[9]  Lior Shamir,et al.  Biometric identification using knee X-rays , 2009, Int. J. Biom..

[10]  Ewert Bengtsson,et al.  A Feature Set for Cytometry on Digitized Microscopic Images , 2003, Analytical cellular pathology : the journal of the European Society for Analytical Cellular Pathology.

[11]  Pietro Perona,et al.  Automatic recognition of biological particles in microscopic images , 2007, Pattern Recognit. Lett..

[12]  Keinosuke Fukunaga,et al.  Introduction to statistical pattern recognition (2nd ed.) , 1990 .

[13]  David J. Kriegman,et al.  From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  L. Shamir,et al.  MACHINE VISION FOR CLASSIFYING BIOLOGICAL AND BIOMEDICAL IMAGES , 2008 .

[15]  Jelena Kovacevic,et al.  A multiresolution approach to automated classification of protein subcellular location images , 2007, BMC Bioinformatics.

[16]  Edward H. Adelson,et al.  The Design and Use of Steerable Filters , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Edward H. Adelson,et al.  The Laplacian Pyramid as a Compact Image Code , 1983, IEEE Trans. Commun..

[18]  Andrew Zisserman,et al.  A Statistical Approach to Material Classification Using Image Patch Exemplars , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Robert F. Murphy,et al.  A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells , 2001, Bioinform..

[20]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[21]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Ming-Kuei Hu,et al.  Visual pattern recognition by moment invariants , 1962, IRE Trans. Inf. Theory.

[23]  David J. Kriegman,et al.  Recognition using class specific linear projection , 1997 .

[24]  A. Mackay "Textures" , 1987 .

[25]  Andy Harter,et al.  Parameterisation of a stochastic model for human face identification , 1994, Proceedings of 1994 IEEE Workshop on Applications of Computer Vision.

[26]  Nikolaos G. Bourbakis,et al.  A hierarchical picture coding scheme , 1989, Pattern Recognit..

[27]  Azriel Rosenfeld,et al.  From Image Analysis to Computer Vision: An Annotated Bibliography, 1955-1979 , 2001, Comput. Vis. Image Underst..

[28]  Lior Shamir,et al.  Automatic Classification of Lymphoma Images With Transform-Based Global Features , 2010, IEEE Transactions on Information Technology in Biomedicine.

[29]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[30]  David G. Stork,et al.  Pattern Classification (2nd ed.) , 1999 .

[31]  Jitendra Malik,et al.  Representing and Recognizing the Visual Appearance of Materials using Three-dimensional Textons , 2001, International Journal of Computer Vision.

[32]  Robert F Murphy,et al.  Automated interpretation of protein subcellular location patterns. , 2006, International review of cytology.

[33]  Lior Shamir,et al.  Pattern Recognition Software and Techniques for Biological Image Analysis , 2010, PLoS Comput. Biol..

[34]  Lior Shamir,et al.  WND-CHARM: Multi-purpose image classification using compound image transforms , 2008, Pattern Recognit. Lett..

[35]  Ilya G. Goldberg,et al.  Pattern recognition approaches to compute image similarities: application to age related morphological change , 2006, 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006..

[36]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[37]  T. Pavlidis Algorithms for Graphics and Image Processing , 1981, Springer Berlin Heidelberg.

[38]  I. Gurevich,et al.  Comparative analysis and classification of features for image models , 2006, Pattern Recognition and Image Analysis.

[39]  Fuhui Long,et al.  Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy , 2003, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[40]  Lior Shamir,et al.  IICBU 2008: a proposed benchmark suite for biological image analysis , 2008, Medical & Biological Engineering & Computing.

[41]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[42]  A Gordon,et al.  Classification, 2nd Edition , 1999 .

[43]  Lior Shamir,et al.  Knee X-Ray Image Analysis Method for Automated Detection of Osteoarthritis , 2009, IEEE Transactions on Biomedical Engineering.

[44]  Antonio Torralba,et al.  Object Detection and Localization Using Local and Global Features , 2006, Toward Category-Level Object Recognition.

[45]  L. Ferrucci,et al.  Early detection of radiographic knee osteoarthritis using computer-aided analysis. , 2009, Osteoarthritis and cartilage.