Spherical conformal geometry with geometric algebra
暂无分享,去创建一个
[1] E. Beltrami,et al. Saggio di interpretazione della geometria Non-Euclidea , 1868 .
[2] D. Hestenes. The design of linear algebra and geometry , 1991 .
[3] L. Ahlfors. Clifford Numbers and Möbius Transformations in Rn , 1986 .
[4] Felix Klein,et al. Ueber Liniengeometrie und metrische Geometrie , 1872 .
[5] William Rowan Hamilton,et al. ON QUATERNIONS, OR ON A NEW SYSTEM OF IMAGINARIES IN ALGEBRA , 1847 .
[6] Felix Klein,et al. Ueber die sogenannte Nicht-Euklidische Geometrie , 1873 .
[7] J. Ratcliffe. Foundations of Hyperbolic Manifolds , 2019, Graduate Texts in Mathematics.
[8] J. J. Seidel,et al. Distance-geometric development of two-dimensional Euclidean, hyperbolical and spherical geometry (II) , 1952 .
[9] W. Floyd,et al. HYPERBOLIC GEOMETRY , 1996 .
[10] D. Hestenes,et al. Clifford Algebra to Geometric Calculus , 1984 .
[11] L. Schläfli. Theorie der vielfachen Kontinuität , 1901 .
[12] Conformal transformations and Clifford algebras , 1980 .
[13] Timothy F. Havel,et al. Distance geometry and geometric algebra , 1993 .
[14] D. Hestenes,et al. Projective geometry with Clifford algebra , 1991 .
[15] Timothy F. Havel. Geometric Algebra and Möbius Sphere Geometry as a Basis for Euclidean Invariant Theory , 1995 .
[16] Boris Rosenfeld,et al. The history of non-euclidean geometry , 1988 .
[17] David Hestenes. New Foundations for Classical Mechanics , 1986 .
[18] D. Hestenes,et al. Lie-groups as Spin groups. , 1993 .
[19] Timothy F. Havel. Some Examples of the Use of Distances as Coordinates for Euclidean Geometry , 1991, J. Symb. Comput..
[20] David Hestenes,et al. Space-time algebra , 1966 .
[21] Hongbo Li,et al. Hyperbolic Geometry with Clifford Algebra , 1997 .
[22] B. Mourrain,et al. Computational Symbolic Geometry , 1995 .