Spreading the seeds of million-murdering death: metamorphoses of malaria in the mosquito.

Plasmodium spp. undergo a complex obligate developmental cycle within their invertebrate vectors that enables transmission between vertebrate hosts. This developmental cycle involves sexual reproduction and then asexual multiplication, separated by phases of invasion and colonization of distinct vector tissues. As with other stages in the Plasmodium life cycle, there is exquisite adaptation of the malaria parasite to its changing environment as it transforms within the blood of its vertebrate host, through the different tissues of its mosquito vector and onwards to infect a new vertebrate host. Despite the intricacies inherent in these successive transformations, malaria parasites remain staggeringly successful at disseminating through their vertebrate host populations.

[1]  J. Meis,et al.  A scanning electron microscopic study of the sporogonic development of Plasmodium falciparum in Anopheles stephensi. , 1992, Acta tropica.

[2]  L. Miller,et al.  The Journey of Malaria Sporozoites in the Mosquito Salivary Gland , 1994, The Journal of eukaryotic microbiology.

[3]  P. C. C. Garnham,et al.  Malaria Parasites and Other Haemosporidia , 1966 .

[4]  M. Jacobs-Lorena,et al.  The peritrophic matrix of hematophagous insects. , 2001, Archives of insect biochemistry and physiology.

[5]  M. Shahabuddin,et al.  A tubular network associated with the brush-border surface of the Aedes aegypti midgut: implications for pathogen transmission by mosquitoes. , 2000, The Journal of experimental biology.

[6]  R. Sinden,et al.  Localization of ribosomal RNA and Pbs21-mRNA in the sexual stages of Plasmodium berghei using electron microscope in situ hybridization. , 1996, European journal of cell biology.

[7]  S. Kappe,et al.  The Plasmodium sporozoite journey: a rite of passage. , 2003, Trends in parasitology.

[8]  L. Ranford-Cartwright,et al.  Plasmodium falciparum ookinete invasion of the midgut epithelium of Anopheles stephensi is consistent with the Time Bomb model , 2004, Parasitology.

[9]  R. Rosenberg,et al.  Xanthurenic Acid Induces Gametogenesis in Plasmodium, the Malaria Parasite* , 1998, The Journal of Biological Chemistry.

[10]  J. Ribeiro,et al.  Analysis of the Plasmodium and Anopheles Transcriptomes during Oocyst Differentiation* , 2004, Journal of Biological Chemistry.

[11]  J. Dvorak,et al.  Invasion in vitro of mosquito midgut cells by the malaria parasite proceeds by a conserved mechanism and results in death of the invaded midgut cells. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[12]  G. Macdonald The Epidemiology and Control of Malaria. , 1957 .

[13]  M. Blackman,et al.  A new release on life: emerging concepts in proteolysis and parasite invasion , 2005, Molecular microbiology.

[14]  Yingyao Zhou,et al.  Global analysis of transcript and protein levels across the Plasmodium falciparum life cycle. , 2004, Genome research.

[15]  J. Dubremetz,et al.  Apical organelles and host-cell invasion by Apicomplexa. , 1998, International journal for parasitology.

[16]  F. Hernández-Hernández,et al.  Insect-malaria parasites interactions: the salivary gland. , 2004, Insect biochemistry and molecular biology.

[17]  T. Tchuinkam,et al.  The early sporogonic cycle of Plasmodium falciparum in laboratory‐infected Anopheles gambiae: an estimation of parasite efficacy , 1998, Tropical medicine & international health : TM & IH.

[18]  J. Ribeiro,et al.  Analysis of the Plasmodium and Anopheles Transcriptional Repertoire during Ookinete Development and Midgut Invasion* , 2004, Journal of Biological Chemistry.

[19]  S. Piertney,et al.  Anopheles gambiae collagen IV genes: cloning, phylogeny and midgut expression associated with blood feeding and Plasmodium infection. , 2003, International journal for parasitology.

[20]  Rafael Cantera,et al.  Real-time, in vivo analysis of malaria ookinete locomotion and mosquito midgut invasion. , 2004, Cellular microbiology.

[21]  R. Beaudoin,et al.  Plasmodium berghei berghei: ectopic development of the ANKA strain in Anopheles stephensi. , 1974, Experimental parasitology.

[22]  R. Sinden,et al.  The roles of temperature, pH and mosquito factors as triggers of male and female gametogenesis of Plasmodium berghei in vitro , 1997, Parasitology.

[23]  A. Warburg,et al.  Interaction of Plasmodium gallinaceum ookinetes and oocysts with extracellular matrix proteins , 1999, Parasitology.

[24]  M. T. Marrelli,et al.  Gene expression in Plasmodium: from gametocytes to sporozoites. , 2004, International journal for parasitology.

[25]  H. Mehlhorn,et al.  The formation of kinetes and oocyst in Plasmodium gallinaceum (Haemosporidia) and considerations on phylogenetic relationships between Haemosporidia, Piroplasmida and other Coccidia. , 1980 .

[26]  L. Gradoni,et al.  The production of the osmiophilic body protein Pfg377 is associated with stage of maturation and sex in Plasmodium falciparum gametocytes. , 1999, Molecular and biochemical parasitology.

[27]  R. Howells,et al.  Nuclear division in the oocyst of Plasmodium berghei. , 1971, Annals of tropical medicine and parasitology.

[28]  R. Beaudoin,et al.  The surface of the malaria parasite. I. Scanning electron microscopy of the oocyst. , 1974, Experimental parasitology.

[29]  David L. Tabb,et al.  A proteomic view of the Plasmodium falciparum life cycle , 2002, Nature.

[30]  R. Hayward,et al.  The biology of Plasmodium falciparum transmission stages , 1998, Parasitology.

[31]  R. Sinden,et al.  A malaria membrane skeletal protein is essential for normal morphogenesis, motility, and infectivity of sporozoites , 2004, The Journal of cell biology.

[32]  P. Sinnis,et al.  The Plasmodium circumsporozoite protein is involved in mosquito salivary gland invasion by sporozoites. , 2004, Molecular and biochemical parasitology.

[33]  Tomoko Ishino,et al.  Liver invasion by malarial parasites – how do malarial parasites break through the host barrier? , 2004, Cellular microbiology.

[34]  John R Yates,et al.  A Comprehensive Survey of the Plasmodium Life Cycle by Genomic, Transcriptomic, and Proteomic Analyses , 2005, Science.

[35]  J. Vinetz,et al.  Plasmodium ookinete-secreted chitinase and parasite penetration of the mosquito peritrophic matrix. , 2001, Trends in parasitology.

[36]  R. Carter,et al.  New observations on gametogenesis, fertilization, and zygote transformation in Plasmodium gallinaceum. , 1984, The Journal of protozoology.

[37]  R. Sinden,et al.  Identification of xanthurenic acid as the putative inducer of malaria development in the mosquito , 1998, Nature.

[38]  A. Waters,et al.  Gene expression in Plasmodium berghei ookinetes and early oocysts in a co-culture system with mosquito cells. , 2005, Molecular and biochemical parasitology.

[39]  R. Tewari,et al.  Calcium and a Calcium-Dependent Protein Kinase Regulate Gamete Formation and Mosquito Transmission in a Malaria Parasite , 2004, Cell.

[40]  R. Sinden,et al.  The dynamics of interactions between Plasmodium and the mosquito: a study of the infectivity of Plasmodium berghei and Plasmodium gallinaceum, and their transmission by Anopheles stephensi, Anopheles gambiae and Aedes aegypti. , 2003, International journal for parasitology.

[41]  J. Bafort The biology of rodent malaria with particular reference to Plasmodium vinckei vinckei Rodhain 1952. , 1971, Annales des Societes belges de medecine tropicale, de parasitologie, et de mycologie.

[42]  T. Asami,et al.  Sporozoite invasion of Plasmodium berghei, rodent malaria parasite, to the salivary glands of the vector mosquito, Anopheles stephensi: an electron microscopic study. , 1999 .

[43]  Sexual and Mosquito Stages of Plasmodium Falciparum , 1989 .

[44]  T. Tsuboi,et al.  Plasmodium Ookinete-secreted Proteins Secreted through a Common Micronemal Pathway Are Targets of Blocking Malaria Transmission* , 2004, Journal of Biological Chemistry.

[45]  R. Sinden,et al.  Cryofracture electron microscopy of the ookinete pellicle of Plasmodium gallinaceum reveals the existence of novel pores in the alveolar membranes. , 2001, Journal of structural biology.

[46]  A. Read,et al.  The genetic structure of malaria parasite populations. , 1992, Parasitology today.

[47]  D. Kaslow,et al.  Adherence of Erythrocytes during Exflagellation of Plasmodium falciparum Microgametes Is Dependent on Erythrocyte Surface Sialic Acid and Glycophorins , 1998, The Journal of experimental medicine.

[48]  Neil Hall,et al.  Analysis of the Plasmodium falciparum proteome by high-accuracy mass spectrometry , 2002, Nature.

[49]  J. Verhave,et al.  Stage‐specific effects of host plasma factors on the early sporogony of autologous Plasmodium falciparum isolates within Anopheles gambiae , 2004, Tropical medicine & international health : TM & IH.

[50]  Gasser Rf The ultrastructure of cultured Plasmodium gallinaceum ookinetes: a comparison of intact stages with forms damaged by extracts from blood fed, susceptible Aedes aegypti. , 1979, Acta tropica.

[51]  D. Baker,et al.  The gametocyte‐activating factor xanthurenic acid stimulates an increase in membrane‐associated guanylyl cyclase activity in the human malaria parasite Plasmodium falciparum , 2001, Molecular microbiology.

[52]  T. Matsuyama,et al.  Essential role of membrane-attack protein in malarial transmission to mosquito host. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[53]  R. Sinden The cell biology of sexual development in Plasmodium , 1983, Parasitology.

[54]  U. Frevert,et al.  Sneaking in through the back entrance: the biology of malaria liver stages. , 2004, Trends in parasitology.

[55]  K. Vernick,et al.  Plasmodium gallinaceum: a novel morphology of malaria ookinetes in the midgut of the mosquito vector. , 1999, Experimental parasitology.

[56]  L. Bannister,et al.  The ins, outs and roundabouts of malaria. , 2003, Trends in parasitology.

[57]  I. Coppens,et al.  Apicomplexan gliding motility and host cell invasion: overhauling the motor model. , 2004, Trends in parasitology.

[58]  F. Kafatos,et al.  Molecular interactions between Anopheles stephensi midgut cells and Plasmodium berghei: the time bomb theory of ookinete invasion of mosquitoes , 2000, The EMBO journal.

[59]  S. Shorte,et al.  Imaging movement of malaria parasites during transmission by Anopheles mosquitoes , 2004, Cellular microbiology.

[60]  K. Nakamura,et al.  Penetration of the mosquito (Aedes aegypti) midgut wall by the ookinetes of Plasmodium gallinaceum. , 1992, The Journal of protozoology.

[61]  J. Vanderberg,et al.  Electron Microscopic and Histochemical Studies of Sporozoite Formation in Plasmodium berghei , 1967 .

[62]  A. Crisanti,et al.  Motility and infectivity of Plasmodium berghei sporozoites expressing avian Plasmodium gallinaceum circumsporozoite protein , 2005, Cellular microbiology.

[63]  R. Sinden,et al.  The development of Plasmodium ookinetes in vitro: an ultrastructural study including a description of meiotic division , 1985, Parasitology.

[64]  Matthias Mann,et al.  Proteome Analysis of Separated Male and Female Gametocytes Reveals Novel Sex-Specific Plasmodium Biology , 2005, Cell.

[65]  L. Ranford-Cartwright,et al.  How do malaria ookinetes cross the mosquito midgut wall? , 2005, Trends in parasitology.

[66]  R. Sinden,et al.  An ultrastructural study of the sporogonic development of Plasmodium falciparum in Anopheles gambiae. , 1978, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[67]  J. Beier,et al.  Malaria parasite development in mosquitoes. , 1998, Annual review of entomology.

[68]  J. Verhave,et al.  Kinetics and efficiency of Plasmodium falciparum development in the midguts of Anopheles gambiae, An. funestus and An. nili. , 1998, Annals of tropical medicine and parasitology.

[69]  J. Hugot,et al.  Evolutionary relationships between 15 Plasmodium species from New and Old World primates (including humans): a 18S rDNA cladistic analysis , 2004, Parasitology.

[70]  A. Talman,et al.  Gametocytogenesis : the puberty of Plasmodium falciparum , 2004, Malaria Journal.

[71]  R. Wirtz,et al.  The distribution of circumsporozoite protein (CS) in Anopheles stephensi mosquitoes infected with Plasmodium falciparum malaria. , 1990, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[72]  U. Frevert,et al.  Intravital microscopy demonstrating antibody-mediated immobilisation of Plasmodium berghei sporozoites injected into skin by mosquitoes. , 2004, International journal for parasitology.

[73]  A. Krettli,et al.  Developmental changes in the circumsporozoite proteins ofPlasmodium berghei andP. gallinaceum in their mosquito vectors , 2004, Parasitology Research.

[74]  L. Ranford-Cartwright,et al.  Do malaria ookinete surface proteins P25 and P28 mediate parasite entry into mosquito midgut epithelial cells? , 2005, Malaria Journal.

[75]  M. van der Ploeg,et al.  Rapid repeated DNA replication during microgametogenesis and DNA synthesis in young zygotes of Plasmodium berghei. , 1986, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[76]  J. Ribeiro,et al.  Transcriptome analysis of Anopheles stephensi-Plasmodium berghei interactions. , 2005, Molecular and biochemical parasitology.

[77]  Todd G. Smith,et al.  Sexual differentiation and sex determination in the Apicomplexa. , 2002, Trends in parasitology.

[78]  J. Meis,et al.  Plasmodium falciparum ookinetes migrate intercellularly throughAnopheles stephensi midgut epithelium , 2004, Parasitology Research.