Existence and multiplicity of traveling waves in a lattice dynamical system

Abstract This work proves the existence and multiplicity results of monotonic traveling wave solutions for some lattice differential equations by using the monotone iteration method. Our results include the model of cellular neural networks (CNN). In addition to the monotonic traveling wave solutions, non-monotonic and oscillating traveling wave solutions in the delay type of CNN are also obtained.

[1]  Shui-Nee Chow,et al.  Traveling Waves in Lattice Dynamical Systems , 1998 .

[2]  John Mallet-Paret,et al.  Spatial Patterns, Spatial Chaos, and Traveling Waves in Lattice Differential Equations , 1996 .

[3]  B. Zinner,et al.  Traveling wavefronts for the discrete Fisher's equation , 1993 .

[4]  Jonathan G. Bell,et al.  Some threshold results for models of myelinated nerves , 1981 .

[5]  James P. Keener,et al.  Propagation and its failure in coupled systems of discrete excitable cells , 1987 .

[6]  S. M. Verduyn Lunel,et al.  Stochastic and spatial structures of dynamical systems , 1996 .

[7]  Lin-Bao Yang,et al.  Cellular neural networks: theory , 1988 .

[8]  B. Zinner,et al.  Stability of traveling wavefronts for the discrete Nagumo equation , 1991 .

[9]  John Mallet-Paret,et al.  The Global Structure of Traveling Waves in Spatially Discrete Dynamical Systems , 1999 .

[10]  Shui-Nee Chow,et al.  Spatially Discrete Nonlinear Diffusion Equations , 1995 .

[11]  Shui-Nee Chow,et al.  Transition layers for singularly perturbed delay differential equations with monotone nonlinearities , 1989 .

[12]  Thomas Erneux,et al.  Propagation failure in arrays of coupled bistable chemical reactors , 1992 .

[13]  John Mallet-Paret,et al.  Traveling Wave Solutions for Systems of ODEs on a Two-Dimensional Spatial Lattice , 1998, SIAM J. Appl. Math..

[14]  John Mallet-Paret,et al.  Pattern Formation and Spatial Chaos in Spatially Discrete Evolution Equations , 1995 .

[15]  Shui-Nee Chow,et al.  Stability and Bifurcation of Traveling Wave Solutions in Coupled Map Lattices , 1994 .

[16]  Leon O. Chua,et al.  Cellular neural networks: applications , 1988 .

[17]  G. Ladas,et al.  Oscillation Theory of Delay Differential Equations: With Applications , 1992 .

[18]  L.O. Chua,et al.  Cellular neural networks , 1993, 1988., IEEE International Symposium on Circuits and Systems.

[19]  Thomas Erneux,et al.  Propagating waves in discrete bistable reaction-diffusion systems , 1993 .

[20]  D. Hankerson,et al.  Wavefronts for a cooperative tridiagonal system of differential equations , 1993 .

[21]  W. Rudin Real and complex analysis , 1968 .

[22]  Chris Cosner,et al.  Threshold behavior and propagation for nonlinear differential-difference systems motivated by modeling myelinated axons , 1984 .

[23]  J. McLeod,et al.  The approach of solutions of nonlinear diffusion equations to travelling front solutions , 1977 .

[24]  Jack K. Hale,et al.  Introduction to Functional Differential Equations , 1993, Applied Mathematical Sciences.

[25]  Xingfu Zou,et al.  Asymptotic and Periodic Boundary Value Problems of Mixed FDEs and Wave Solutions of Lattice Differential Equations , 1997 .

[26]  Wenxian Shen,et al.  Traveling waves in cellular neural networks , 1999 .

[27]  Wenxian Shen,et al.  Lifted Lattices, Hyperbolic Structures, and Topological Disorders in Coupled Map Lattices , 1996, SIAM J. Appl. Math..

[28]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[29]  A. Siamj.,et al.  CELLULAR NEURAL NETWORKS : MOSAIC PATTERN AND SPATIAL CHAOS , 2000 .

[30]  G. Sell,et al.  Systems of Differential Delay Equations: Floquet Multipliers and Discrete Lyapunov Functions , 1996 .

[31]  Vladimir I. Nekorkin,et al.  CHAOS OF TRAVELING WAVES IN A DISCRETE CHAIN OF DIFFUSIVELY COUPLED MAPS , 1994 .

[32]  Jonq Juang,et al.  Cellular Neural Networks: Pattern Formation and Spatial Chaos , 1999 .

[33]  John W. Cahn,et al.  Theory of crystal growth and interface motion in crystalline materials , 1960 .

[34]  B. Zinner,et al.  Existence of traveling wavefront solutions for the discrete Nagumo equation , 1992 .

[35]  Shui-Nee Chow,et al.  Pattern formation and spatial chaos in lattice dynamical systems. II , 1995 .

[36]  John Mallet-Paret,et al.  The Fredholm Alternative for Functional Differential Equations of Mixed Type , 1999 .

[37]  Leon O. Chua,et al.  The CNN paradigm , 1993 .

[38]  Leon O. Chua,et al.  Pattern formation properties of autonomous Cellular Neural Networks , 1995 .

[39]  G. Sell,et al.  THE POINCARE-BENDIXSON THEOREM FOR MONOTONE CYCLIC FEEDBACK SYSTEMS WITH DELAY , 1996 .