A NOTE ON ENTROPY OF AUTO-EQUIVALENCES: LOWER BOUND AND THE CASE OF ORBIFOLD PROJECTIVE LINES

Entropy of categorical dynamics is defined by Dimitrov–Haiden–Katzarkov–Kontsevich. Motivated by the fundamental theorem of the topological entropy due to Gromov–Yomdin, it is natural to ask an equality between the entropy and the spectral radius of induced morphisms on the numerical Grothendieck group. In this paper, we add two results on this equality: the lower bound in a general setting and the equality for orbifold projective lines.

[1]  K. Yoshioka Categorical entropy for Fourier-Mukai transforms on generic abelian surfaces , 2017, Journal of Algebra.

[2]  Akishi Ikeda MASS GROWTH OF OBJECTS AND CATEGORICAL ENTROPY , 2016, Nagoya Mathematical Journal.

[3]  Genki Ouchi On entropy of spherical twists , 2017, Proceedings of the American Mathematical Society.

[4]  A. Takahashi,et al.  Primitive forms for affine cusp polynomials , 2012, Tohoku mathematical journal.

[5]  Genki Ouchi Automorphisms of positive entropy on some hyperKähler manifolds via derived automorphisms of K3 surfaces , 2016, Advances in Mathematics.

[6]  Yu-Wei Fan Entropy of an autoequivalence on Calabi-Yau manifolds , 2017, 1704.06957.

[7]  T. Truong Relations between dynamical degrees, Weil's Riemann hypothesis and the standard conjectures , 2016, 1611.01124.

[8]  A. Takahashi,et al.  On the categorical entropy and the topological entropy , 2016, 1602.03463.

[9]  Kohei Kikuta On entropy for autoequivalences of the derived category of curves , 2016, 1601.06682.

[10]  Ailsa Keating Homological mirror symmetry for hypersurface cusp singularities , 2015, Selecta Mathematica.

[11]  A. Takahashi Mirror symmetry between orbifold projective lines and cusp singularities , 2015 .

[12]  A. Takahashi,et al.  On the Frobenius Manifolds for Cusp Singularities , 2013, 1308.0105.

[13]  M. Kontsevich,et al.  Dynamical systems and categories , 2013, 1307.8418.

[14]  A. Takahashi,et al.  Stokes matrices for the quantum cohomologies of a class of orbifold projective lines , 2013, 1305.5775.

[15]  D. Shklyarov Hirzebruch–Riemann–Roch‐type formula for DG algebras , 2007, 0710.1937.

[16]  A. Takahashi,et al.  A Uniqueness Theorem for Frobenius Manifolds and Gromov--Witten Theory for Orbifold Projective Lines , 2012, 1209.4870.

[17]  V. Lunts Lefschetz fixed point theorems for Fourier-Mukai functors and DG algebras , 2011, 1102.2884.

[18]  P. Rossi Gromov-Witten theory of orbicurves, the space of tri-polynomials and symplectic field theory of Seifert fibrations , 2008, 0808.2626.

[19]  A. Takahashi Weighted Projective Lines Associated to Regular Systems of Weights of Dual Type , 2007, 0711.3907.

[20]  K. Ueda Homological Mirror Symmetry and Simple Elliptic Singularities , 2006, math/0604361.

[21]  Amnon Yekutieli,et al.  Derived Picard Groups of Finite-Dimensional Hereditary Algebras , 1999, Compositio Mathematica.

[22]  H. Lenzing,et al.  The automorphism group of the derived category for a weighted projective line , 2000 .

[23]  G. Greuel Singularities, Representation of Algebras, and Vector Bundles , 1987 .

[24]  Y. Yomdin Volume growth and entropy , 1987 .

[25]  H. Lenzing,et al.  A class of weighted projective curves arising in representation theory of finite dimensional algebras , 1987 .

[26]  M. Gromov Entropy, homology and semialgebraic geometry , 1986 .

[27]  M. Gromov,et al.  L'enseignement Mathématique on the Entropy of Holomorphic Maps , 2022 .